Corrigé du Devoir à la Maison n°5

Partie A : Irrationalité de e

1. Soit $n \in \mathbb{N}$.

La fonction $t \mapsto t^n e^t$ est définie sur le segment [0,1]. Elle est continue par produit de fonctions continues, donc l'intégrale I_n est définie.

2. (a) Soit $n \in \mathbb{N}$. Par définition $I_{n+1} = \int_0^1 t^{n+1} e^t dt$.

On pose $u(t) = t^{n+1}$ et $v(t) = e^{t}$. Ces fonctions sont de classe C^1 , de dérivées $u'(t) = (n+1)t^n$ et $v'(t) = e^t$. Par intégration par parties :

$$I_{n+1} = \left[t^{n+1}e^t\right]_0^1 - \int_0^1 (n+1)t^n e^t dt$$

Ceci donne:

$$I_{n+1} = e - 0 - (n+1) \int_0^1 t^n e^t dt = e - (n+1)I_n$$

(b) On obtient $I_0 = \int_0^1 e^t dt = [e^t]_0^1 = e - 1$.

Ensuite, en utilisant le résultat de la question précédente :

$$I_1 = e - I_0 = 1$$
 $I_2 = e - 2I_1 = e - 2$ $I_3 = e - 3I_2 = 6 - 2e$.

(c) Soit \mathcal{P}_n la propriété : Il existe deux entiers a_n et b_n tels que $I_n = a_n e + b_n$.

On démontre par récurrence que cette propriété est vraie pour tout $n \in \mathbb{N}$.

<u>Initialisation</u>. Soit $a_0 = 1$ et $b_0 = -1$. Alors a_0 et b_0 sont entiers, et $I_0 = a_0 e + b_0$ car $I_0 = e - 1$, donc la propriété \mathcal{P}_0 est vraie.

<u>Hérédité.</u> Supposons que pour un certain $n \in \mathbb{N}$ la propriété \mathcal{P}_n est vraie. Alors il existe deux entiers a_n et b_n tels que $I_n = a_n e + b_n$.

D'après la propriété démontrée ci-dessus : $I_{n+1} = e - (n+1)I_n$.

Ceci donne:

$$I_{n+1} = e - (n+1)a_n e - (n+1)b_n = [1 - (n+1)a_n]e - (n+1)b_n$$

Posons $a_{n+1} = 1 - (n+1)a_n$ et $b_{n+1} = -(n+1)b_n$.

Alors $I_{n+1} = a_{n+1}e + b_{n+1}$.

Comme a_n et b_n sont entiers alors a_{n+1} et b_{n+1} sont entiers.

Ceci montre que la propriété \mathcal{P}_{n+1} est vraie.

L'hérédité de la propriété \mathcal{P}_n est démontrée.

<u>Conclusion</u>. Par récurrence la propriété \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$, donc pour tout $n \in \mathbb{N}$ il existe deux entiers a_n et b_n tels que $I_n = a_n e + b_n$.

3. Comme la fonction exponentielle est croissante sur [0,1] alors :

$$\forall t \in [0,1] \qquad 0 \leqslant t \leqslant 1 \quad \Longrightarrow \quad 1 \leqslant e^t \leqslant e$$

Soit $n \in \mathbb{N}$. Pour tout $t \in [0,1]$, comme t est positif alors t^n est positif et donc :

$$\forall t \in [0, 1] \qquad t^n \leqslant t^n e^t \leqslant t^n e$$

Par croissance de l'intégrale, comme $0 \le 1$:

$$\int_0^1 t^n \, \mathrm{d}t \leqslant \int_0^1 t^n e^t \, \mathrm{d}t \leqslant \int_0^1 t^n e \, \mathrm{d}t$$

On calcule:

$$\int_0^1 t^n \, \mathrm{d}t = \left[\frac{t^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1} \qquad \text{et} \qquad \int_0^1 t^n e \, \mathrm{d}t = e \int_0^1 t^n \, \mathrm{d}t = \frac{e}{n+1}$$

On en déduit :

$$\forall n \in \mathbb{N} \qquad \frac{1}{n+1} \leqslant I_n \leqslant \frac{e}{n+1}.$$

4. (a) Comme $e = \frac{p}{q}$ et $I_p = a_p e + b_p$ alors $qI_p = pa_p + qb_p$.

Comme a_p , b_p , p et q sont entiers alors $pa_p + qb_p$ est un entier, donc qI_p est entier.

(b) D'après la question (3) et comme $p \in \mathbb{N}$ alors :

$$\frac{1}{p+1} \leqslant I_p \leqslant \frac{e}{p+1}$$

En multipliant par q, qui est positif :

$$\frac{q}{p+1} \leqslant qI_p \leqslant \frac{p}{p+1}$$

Or q est strictement positif, et $0 donc <math>0 < \frac{q}{p+1}$ et $\frac{p}{p+1} < 1$, ce qui donne par transitivité :

$$0 < qI_p < 1$$

Ceci est impossible car qI_p est entier, alors que l'intervalle]0,1[ne contient aucun entier

Cette contradiction montre qu'il n'existe pas d'entiers p et q tels que $e = \frac{p}{q}$, donc e est irrationnel.

Partie B.

1. Soit $n \in \mathbb{N}$.

La fonction $t \mapsto t^n e^{1-t}$ est définie sur le segment [0,1]. Elle est continue par composition et produit, donc son intégrale sur ce segment est définie.

De plus n! est non-nul donc J_n est défini.

On calcule:

$$J_0 = \frac{1}{0!} \int_0^1 e^{1-t} dt = \left[\frac{e^{1-t}}{-1} \right]_0^1 = e - 1$$

2. (a) Soit $n \in \mathbb{N}$.

La fonction e^{1-t} est décroissante sur le segment [0,1], de valeurs e en t=0 et 1 en t=1. Donc :

$$\forall t \in [0, 1] \qquad 1 \leqslant e^{1-t} \leqslant e$$

Comme t^n est positif sur le segment [0,1] alors :

$$\forall t \in [0, 1] \qquad t^n \leqslant t^n e^{1-t} \leqslant t^n e$$

Par croissance de l'intégrale :

$$\int_0^1 t^n \, \mathrm{d}t \leqslant \int_0^1 t^n e^{1-t} \, \mathrm{d}t \leqslant \int_0^1 t^n e \, \mathrm{d}t$$

Comme dans la question (3) de la partie précédente on obtient :

$$\frac{1}{n+1} \leqslant \int_0^1 t^n e^{1-t} \, \mathrm{d}t \leqslant \frac{e}{n+1}$$

En divisant par n!, qui est strictement positif :

$$\frac{1}{(n+1)!} \leqslant J_n \leqslant \frac{e}{(n+1)!}$$

(b) On vient de démontrer que :

$$\forall n \in \mathbb{N}$$
 $\frac{1}{(n+1)!} \leqslant J_n \leqslant \frac{e}{(n+1)!}$

Les suites $\left(\frac{1}{(n+1)!}\right)_{n\in\mathbb{N}}$ et $\left(\frac{e}{(n+1)!}\right)_{n\in\mathbb{N}}$ convergent vers 0, donc d'après le théorème d'encadrement la suite $(J_n)_{n\in\mathbb{N}}$ converge vers 0.

3. (a) Soit $n \in \mathbb{N}^*$.

Posons $u(t) = t^n$ et $v(t) = -e^{1-t}$.

Ces deux fonctions sont de classe C^1 sur le segment [0,1], et $u'(t) = nt^{n-1}$, $v'(t) = e^{1-t}$. Par intégration par parties :

$$\int_0^1 t^n e^{1-t} dt = \left[-t^n e^{1-t} \right]_0^1 + \int_0^1 n t^{n-1} e^{1-t} dt = -1 + n \int_0^1 t^{n-1} e^{1-t} dt$$

La fonction $t\mapsto t^n$ s'annule en 0 car n est supposé strictement positif.

En divisant par n! on obtient :

$$\frac{1}{n!} \int_0^1 t^n e^{1-t} dt = -\frac{1}{n!} + \frac{1}{(n-1)!} \int_0^1 t^{n-1} e^{1-t} dt$$

Ceci donne exactement :

$$J_n = J_{n-1} - \frac{1}{n!}.$$

(b) D'après la question précédente :

$$\forall k \in \mathbb{N}^* \qquad J_k - J_{k-1} = -\frac{1}{k!}.$$

Soit $n \in \mathbb{N}$. Par somme, pour k allant de 1 à n:

$$\sum_{k=1}^{n} (J_k - J_{k-1}) = -\sum_{k=1}^{n} \frac{1}{k!}$$

Par télescopage:

$$J_n - J_0 = -\sum_{k=0}^n \frac{1}{k!} + 1$$

Les expressions de J_0 et u_n donnent :

$$J_n - e + 1 = -u_n + 1$$

On en déduit :

$$\forall n \in \mathbb{N}$$
 $J_n = e - u_n$.

Cette expression s'écrit aussi $u_n = e - J_n$.

Comme la suite $(J_n)_{n\in\mathbb{N}}$ converge vers 0 alors par somme la suite $(u_n)_{n\in\mathbb{N}}$ converge vers e.

On a bien démontré que :

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!} = e.$$

On peut ajouter, en utilisant l'encadrement de la question (2a), que u_n est une approximation par défaut de e à $\frac{e-1}{n!}$ près, donc que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers e à vitesse factorielle, ce qui est très rapide.