Corrigé du Devoir à la Maison n°10

Exercice 1.

1. Comme $P=X^3+pX+q$ alors $P'=3X^2+p$. La division euclidienne de P par P' donne P=P'Q+R avec :

$$Q = \frac{1}{3}X$$
 et $R = \frac{2}{3}pX + q$.

2. (a) La spécialisation du résultat précédent en α est :

$$P(\alpha) = P'(\alpha)Q(\alpha) + R(\alpha)$$

Par théorème, si α est une racine double de P alors α est racine de P et de P', *i.e.*, $P(\alpha) = P'(\alpha) = 0$, et donc $R(\alpha) = 0$.

Comme $p \neq 0$ alors $\alpha = -\frac{3q}{2p}$.

Ainsi $-\frac{3q}{2p}$ est la seule racine double possible de P.

(b) Supposons que P admet une racine double. Alors d'après la question précédente cette racine est $\alpha = -\frac{3q}{2p}$. Comme elle est racine double de P alors elle est racine de $P' = 3X^2 + p$ donc :

$$3\left(\frac{3q}{2p}\right)^2 + p = 0$$

La multiplication par $4p^2$ de cette égalité donne $27q^2+4p^3=0$ donc $\Delta=0$. Réciproquement, supposons que $\Delta=0$. Soit $\alpha=-\frac{3q}{2p}$. Alors :

$$P'(\alpha) = 3\left(\frac{3q}{2p}\right)^2 + p = \frac{27q^2 + 4p^3}{4p^2} = \frac{\Delta}{4p^2} = 0$$

Ceci montre que $P'(\alpha) = 0$. De plus, il est immédiat que $R(\alpha) = 0$, donc la division euclidienne montre que $P(\alpha) = 0$. Ainsi α est racine double de P puisqu'elle est racine de P et de P'.

Finalement P admet une racine double si et seulement si $\Delta = 0$.

3. Supposons que p = 0.

Comme $\Delta = 4p^3 + 27q^2$ alors :

$$\Delta = 0 \iff q = 0$$

Si q = 0 alors $P = X^3$, ce polynôme admet bien une racine double, et même triple, il s'agit de 0.

Si $P = X^3 + q$ admet une racine double, alors cette racine est également racine de $P' = 3X^2$, donc elle est nulle, et donc q = 0 car $P(\alpha) = 0$.

On a démontré que P admet une racine double si et seulement si $\Delta = 0$, que p soit nul ou non-nul.

Exercice 2.

Soit Q = XP - 1.

Comme P est de degré 2022 alors Q est de degré 2023.

Pour tout $k = 1, \ldots, 2023$ on a $P(k) = \frac{1}{k}$, donc Q(k) = 0.

Ainsi tous les entiers de 1 à 2023 sont racines de Q.

Comme Q est de degré 2023 alors il n'a pas d'autres racines, et toutes sont simples.

On en déduit, en notant λ le coefficient dominant de Q :

$$Q = \lambda \prod_{k=1}^{2023} (X - k).$$

On remarque que Q(0) = -1, ce qui donne :

$$-1 = \lambda \prod_{k=1}^{2023} (-k) = \lambda (-1)^{2023} \prod_{k=1}^{2023} k = -\lambda \times 2023!.$$

Ainsi $\lambda = \frac{1}{2023!}$, puis :

$$Q(2024) = \frac{1}{2023!} \prod_{k=1}^{2023} (2024 - k).$$

Le changement d'indice $\ell = 2024 - k$ donne :

$$Q(2024) = \frac{1}{2023!} \prod_{\ell=1}^{2023} \ell = 1.$$

Comme Q = XP - 1 alors :

$$P(2024) = \frac{1}{2024}(1 + Q(2024)) = \frac{1}{1012}.$$

Finalement : $P(2024) = \frac{1}{1012}$.

Exercice 3.

On note T une période f.

1. Comme T est une période de f alors :

$$\forall x \in \mathbb{R}$$
 $f(x+T) = f(x)$.

La dérivée de la fonction $x \mapsto x + T$ est la fonction $x \mapsto 1$, donc en dérivant on obtient par composition :

$$\forall x \in \mathbb{R}$$
 $f'(x+T) = f'(x)$.

La fonction f' est donc périodique de période T.

- 2. Comme la fonction f est T-périodique alors :
 - f(0) = f(T).

La fonction f est de classe C^1 , donc :

- f est continue sur [0,T],
- f est dérivable sur]0, T[.

D'après le théorème de Rolle il existe $c \in [0, T]$ tel que f'(c) = 0.

Comme la fonction f' est T-périodique alors :

$$\forall n \in \mathbb{Z}$$
 $f'(c+nT) = 0.$

Ceci montre que f' s'annule en un nombre infini de points.

3. Comme la fonction f est de classe \mathcal{C}^1 alors la fonction f' est continue.

Une fonction continue sur un segment est bornée, donc la fonction f' est bornée sur le segment [0, T].

Comme elle est T-périodique alors elle est bornée sur $\mathbb R$ tout entier.

En effet la périodicité montre que pour tout $n \in \mathbb{Z}$: f([nT, (n+1)T]) = f([0, T]), et comme $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} [nT, (n+1)T]$ alors :

$$f(\mathbb{R}) = f\left(\bigcup_{n \in \mathbb{Z}} [nT, (n+1)T]\right) = f([0, T])$$

Soit M un majorant de |f'| sur \mathbb{R} . Alors :

- f est dérivable sur l'intervalle \mathbb{R} .
- Pour tout $t \in \mathbb{R}$: $|f'(t)| \leq M$.

L'inégalité des accroissements finis montre que la fonction f est M-lipschitzienne.

- 4. Pour tout $n \in \mathbb{N}^*$ on définit la propriété :
 - \mathcal{P}_n : La fonction $f^{(n)}$ est périodique et s'annule en un nombre infini de points.

On démontre par récurrence que cette propriété est vraie pour tout $n \in \mathbb{N}^*$.

Initialisation. Les questions 1 et 2 montrent que la propriété \mathcal{P}_1 est vraie.

<u>Hérédité.</u> Supposons que pour un $n \in \mathbb{N}^*$ la propriété \mathcal{P}_n est vraie.

Alors $f^{(n)}$ est périodique. Comme f est de classe \mathcal{C}^{∞} alors $f^{(n)}$ est de classe \mathcal{C}^1 .

D'après les questions 1 et 2, appliquées à la fonction $f^{(n)}$, sa dérivée $f^{(n+1)}$ est périodique et s'annule en une infinité de points.

Donc la propriété \mathcal{P}_{n+1} est vraie.

L'hérédité est démontrée.

Conclusion. Par récurrence la propriété \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

Ainsi pour tout $n \in \mathbb{N}$ la fonction $f^{(n)}$ s'annule en une infinité de points, donc il existe $\alpha_n \in \mathbb{R}$ tel que $f^{(n)}(\alpha_n) = 0$.

Exercice 4.

On note $P: \mathbb{R} \to \mathbb{R}$ la fonction polynomiale $x \mapsto P(x)$.

1. On applique le théorème de Rolle sur chaque intervalle $[\alpha_i, \alpha_{i+1}]$, pour i allant de 1 à k-1.

Comme la fonction P est polynomiale alors elle est dérivable, donc pour tout $i=1,\ldots,k-1$:

- La fonction P est continue sur $[\alpha_i, \alpha_{i+1}]$.
- La fonction P est dérivable sur $]\alpha_i, \alpha_{i+1}[$.
- $P(\alpha_i) = P(\alpha_{i+1})$ car α_i et α_{i+1} sont racines de P.

D'après le théorème de Rolle il existe $\beta_i \in [\alpha_i, \alpha_{i+1}]$ tel que $P'(\beta_i) = 0$.

En particulier:

$$\alpha_1 < \beta_1 < \alpha_2 < \cdots < \beta_{k-1} < \alpha_k$$
.

Ceci montre que les réels $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_{k-1}$ sont deux-à-deux distincts.

2. Pour tout i = 1, ..., k, soit m_i la multiplicité de α_i en tant que racine de P. Comme P est scindé dans $\mathbb{R}[X]$ et $\alpha_1, ..., \alpha_k$ sont ses racines alors :

$$P = \lambda \prod_{i=1}^{k} (X - \alpha_i)^{m_i} \quad \text{avec} \quad \lambda \in \mathbb{R}.$$
 (*)

Soit n le degré de P. Comme P est non-nul alors $n \in \mathbb{N}$, et l'égalité (\star) montre que :

$$n = \sum_{i=1}^{k} m_i.$$

Par propriété des polynômes chaque α_i est racine de P' de multiplicité $m_i - 1$, donc P' est multiple de $(X - \alpha_i)^{m_i - 1}$ pour tout i = 1, ..., k.

De plus chaque β_i est racine de P', donc P' est multiple de $(X - \beta_i)$ pour tout $i = 1, \ldots, k - 1$.

Comme les réels $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_{k-1}$ sont deux-à-deux distincts alors les polynômes $(X - \alpha_1), \ldots, (X - \alpha_k), (X - \beta_i), \ldots, (X - \beta_{k-1})$ sont premiers entre eux deux-à-deux, donc P' est multiple de :

$$Q = \prod_{i=1}^{k} (X - \alpha_i)^{m_i - 1} \times \prod_{i=1}^{k-1} (X - \beta_i).$$

Le degré de ce polynôme est :

$$\sum_{i=1}^{k} (m_i - 1) + \sum_{i=1}^{k-1} 1 = n - k + k - 1 = n - 1$$

Comme le polynôme P' est de degré n-1 alors il existe $\mu \in \mathbb{R}$ tel que $P' = \mu Q$, ce qui montre que P' est scindé.

On peut ajouter que son coefficient dominant est $\mu = n\lambda$.

Exercice 5.

1. Soit x_0 un point de \mathbb{R} . Comme f est 1-lipschitzienne alors :

$$\forall x \in \mathbb{R} \qquad |f(x) - f(x_0)| \leqslant |x - x_0|.$$

Par théorème de comparaison :

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Ceci montre que f est continue en x_0 .

Ceci est vrai pour tout $x_0 \in \mathbb{R}$ donc f est continue sur \mathbb{R} .

2. Soit x et y deux points de A.

Alors x et y sont points fixes de f, i.e., f(x) = x et f(y) = y.

Quitte à les inverser on peut supposer que $x \leq y$.

Soit z un réel tel que $x \leq z \leq y$. Comme f est 1-lipschitzienne alors :

$$|f(z) - f(x)| \le |z - x|$$
 et $|f(z) - f(y)| \le |z - y|$.

comme $x \le z \le y$ alors $z - x \ge 0$ et $y - z \ge 0$, donc :

$$x - z \le f(z) - f(x) \le z - x$$
 et $z - y \le f(z) - f(y) \le y - z$.

Comme x et y sont points fixes de f:

$$x-z\leqslant f(z)-x\leqslant z-x\qquad\text{et}\qquad z-y\leqslant f(z)-y\leqslant y-z$$
puis
$$2x-z\leqslant f(z)\leqslant z\qquad \text{et}\qquad z\leqslant f(z)\leqslant 2y-z.$$

On obtient $f(z) \leq z$ et $z \leq f(z)$, donc f(z) = z par antisymétrie.

Ceci montre que $z \in A$.

On a démontré que pour tous x et y éléments de A et z élément de \mathbb{R} , si $x \leq z \leq y$ alors $z \in A$:

$$\forall (x,y) \in A^2 \qquad \forall z \in \mathbb{R} \qquad (x \leqslant z \leqslant y \implies z \in A).$$

Par définition A est un intervalle.

3. Comme A est non-vide et borné alors d'après les propriétés des bornes inférieures et supérieures A admet un plus petit majorant et un plus grand minorant, donc une borne inférieure et une borne supérieure.

Soit
$$a = \text{Inf } A \text{ et } b = \text{Sup } A.$$

Comme a est le plus grand minorant de A alors pour tout $n \in \mathbb{N}$ le réel $a + \frac{1}{n}$ n'est pas un minorant de a, donc il existe $a_n \in A$ tel que $a_n < a + \frac{1}{n}$.

Comme $a_n \in A$ alors $a \leq a_n$, donc $a \leq a_n < a + \frac{1}{n}$.

On a ainsi construit une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A vérifiant :

$$\forall n \in \mathbb{N} \qquad a \leqslant a_n < a + \frac{1}{n}.$$

Par théorème d'encadrement la suite $(a_n)_{n\in\mathbb{N}}$ converge vers a.

Comme f est continue alors la suite $(f(a_n))_{n\in\mathbb{N}}$ converge vers f(a).

Comme pour tout $n \in \mathbb{N}$, $a_n \in A$ alors $f(a_n) = a_n$.

Par unicité de la limite f(a) = a, i.e., $a \in A$.

Ainsi Inf $A \in A$: a est le minimum de A.

On démontre de même que $\sup A \in A : b$ est le maximum de A.

Ainsi A est un intervalle borné, admettant un minimum et un maximum, donc A est un segment : A = [a, b].