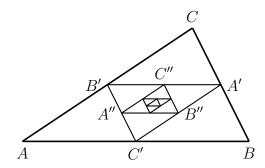
Devoir à la maison n° 7 CORRIGÉ

Exercice 1.

1.



- 2. Par définition : $\forall n \in \mathbb{N}, \ a_{n+1} = \frac{b_n + c_n}{2}, b_{n+1} = \frac{a_n + c_n}{2}$ et $c_{n+1} = \frac{a_n + b_n}{2}$, d'où la formule voulue.
- 3. (a) On a $V^2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}$, donc $V^4 = 9I_3$.

La matrice V est donc inversible, d'inverse $V^{-1}=\frac{V^3}{9}=\frac{1}{3}\begin{pmatrix}1&1&1\\1&j^2&j\\1&j&j^2\end{pmatrix}$.

- (b) Par calcul direct : $V^{-1}MV = \frac{1}{6} \begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix} \begin{pmatrix} 2 & -1 & -1 \\ 2 & -j & -j^2 \\ 2 & -j^2 & -j \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}.$
- (c) On a: $\forall n \in \mathbb{N}, \ Y_{n+1} = V^{-1}X_{n+1} = V^{-1}MX_n = V^{-1}MVV^{-1}X_n = DY_n.$ La suite (Y_n) est donc géométrique de raison D, et donc :

$$\forall n \in \mathbb{N}, \ Y_n = D^n Y_0, \ \text{où} \ Y_0 = V^{-1} X_0 = \frac{1}{3} \begin{pmatrix} a_0 + b_0 + c_0 \\ a_0 + j^2 b_0 + j c_0 \\ a_0 + j b_0 + j^2 c_0 \end{pmatrix}.$$

(d) Comme $D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \left(-\frac{1}{2}\right)^n & 0 \\ 0 & 0 & \left(-\frac{1}{2}\right)^n \end{pmatrix}$, on a $D^n \underset{n \to +\infty}{\longrightarrow} \Delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

La suite (Y_n) converge donc vers $\Delta Y_0 = \frac{a_0 + b_0 + c_0}{3} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

4. D'après le résultat précédent, la suite (X_n) converge vers $\frac{a_0 + b_0 + c_0}{3}V\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \frac{a_0 + b_0 + c_0}{3}\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

Graphiquement, les suites de points $(A^{(n)})$, $(B^{(n)})$ et $(C^{(n)})$, et donc la suite de triangles $(A^{(n)}B^{(n)}C^{(n)})$, convergent vers le même point d'affixe $\frac{a_0+b_0+c_0}{3}$, c'est-à-dire le centre de gravité du triangle ABC.

Exercice 2.

- 1. La droite y=x est la tangente en x=0 au graphe de la fonction $f:x\mapsto \ln(1+x)$, définie sur $]-1,+\infty[$. Comme $\forall x>-1,\ f''(x)=-\frac{1}{(1+x)^2}\leq 0$, la fonction f est concave, donc son graphe est en-dessous de sa tangente en 0, c'est-à-dire : $\forall x>-1,\ f(x)\leq x$.
- 2. D'après la question précédente : $\forall n \in \mathbb{N}^*$, $\ln\left(\frac{n+1}{n}\right) = \ln\left(1+\frac{1}{n}\right) \leq \frac{1}{n}$. De même : $\forall n \in \mathbb{N}^*$, $\ln\left(\frac{n+1}{n}\right) = -\ln\left(\frac{n}{n+1}\right) = -\ln\left(1-\frac{1}{n+1}\right) \geq -\left(-\frac{1}{n+1}\right) = \frac{1}{n+1}$.
- 3. D'après la question précédente
 - $\forall n \geq 1, u_{n+1} u_n = \frac{1}{n+1} \ln\left(\frac{n+1}{n}\right) \leq 0$, donc la suite (u_n) est décroissante,
 - $\forall n \geq 2, v_n v_{n-1} = \frac{1}{n} \ln\left(\frac{n+1}{n}\right) \geq 0$, donc la suite (v_n) est croissante.

De plus : $\forall n \in \mathbb{N}^*, \ u_n - v_n = \ln\left(\frac{n+1}{n}\right)$, donc :

• $u_n - v_n \underset{n \to +\infty}{\longrightarrow} \ln(1) = 0$,

donc les suites (u_n) et (v_n) sont adjacentes.

4. Comme les suites (u_n) et (v_n) sont adjacentes, elles sont convergentes vers la même limite. Notons celle-ci $\gamma \in \mathbb{R}$. Notons alors, $\forall n \in \mathbb{N}^*$, $\varepsilon_n = u_n - \gamma$. La suite (ε_n) converge alors vers 0, et :

$$\forall n \in \mathbb{N}^*, \ \varepsilon_n = H_n - \ln n - \gamma,$$

d'où la formule voulue.

On sait que $\forall n \in \mathbb{N}^*, \ u_n \leq \gamma \leq v_n$. Or :

$$\left(u_n - v_n = \ln\left(\frac{n+1}{n}\right) \le 0,001\right) \Leftrightarrow \left(n \ge \frac{1}{e^{0,001} - 1} \simeq 999, 5\right).$$

Donc à 10^{-3} près, $\gamma \simeq u_{1000} \simeq 0,577$, calculé grâce au code Python suivant :

from math import *
u=1
N=1000
for k in range(1,N):
 u=u+1/(k+1)-log((k+1)/k)
print(u)

Remarque : Cette limite, appelée constante d'Euler, fut découverte par Leonhard Euler en 1734. On ne sait pas à l'heure actuelle s'il s'agit d'un nombre rationnel.