Programme de colles n° 21 Semaine du 18 au 22 mars 2024

Chapitre 15: Espaces vectoriels

- I. Définition et exemples fondamentaux $(\mathbb{K}^n, \mathbb{K}^{\mathbb{N}}, \mathcal{F}(I, \mathbb{K}), M_{n,p}(\mathbb{K}), \mathbb{K}[X])$
- II. Sous-espaces vectoriels (engendrés, en somme directe, supplémentaires)
- III. Familles libres, familles génératrices, bases

Chapitre 16 : Applications linéaires

- I.1. et 2. Définition, composition, restriction
- I.3. Noyau et image
- II. Isomorphismes

Questions de cours:

Sauf mention contraire, les démonstrations sont à connaître.

- Définition d'un K-espace vectoriel
- F et G sous-espaces vectoriels $\Rightarrow F \cap G$ et F + G sous-espaces vectoriels
- Définition d'une famille libre, d'une famille génératrice d'un sous-espace vectoriel, d'une base
- Définition d'une application linéaire, de son noyau, de son image
- Pour $f \in \mathcal{L}(E, F)$, $\mathrm{Ker}(f)$ est un sous-espace vectoriel de E, $\mathrm{Im}(f)$ est un sous-espace vectoriel de F
- Linéarité de $g \circ f$ lorsque $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, linéarité de f^{-1} lorsque $f \in \text{Isom}(E, F)$.