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Chapitre A9
Suites

I. Généralités

A. Définitions

Définitions
Une suite à valeurs réelles indexée par N est une application :

u : N −→ R

n 7−→ un

On note un l’image de l’entier n par l’application u, au lieu de u(n).
On définit aussi les suites à valeurs complexes, les suites indéxées par N∗, etc.

Exemple. La suite
( 1
n

)
n∈N∗ est indexées par N∗.

Notations
• Une suite peut être notée : u ou (un)n∈N ou (u0, u1, u2, . . .)
• Si λ est un réel, on note (λ)n∈N la suite constante égale à λ.
• On note RN l’ensemble des suites à valeurs réelles indexées par N.

On définit de même CN, RN∗ , etc.

Modes de définition
On peut définir une suite de plusieurs façons.

• Définition explicite : ∀n ∈ N un = 3n − 2
• Définition par récurrence : u0 = 1 et ∀n ∈ N un+1 = 1 − u2

n/2
• Définition implicite : pour tout n ∈ N, soit un la solution positive de l’équa-

tion xn + x − 1.
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Chapitre A9. Suites I. Généralités

B. Opérations

Définitions
L’ensemble RN est muni des opérations suivantes.

• Addition : si u et v sont deux suites, alors u + v est la suite définie par :

∀n ∈ N (u + v)n = un + vn ou u + v = (u0 + v0, u1 + v1, . . .)

• Multiplication : si u et v sont deux suites, alors uv est la suite définie par :

∀n ∈ N (uv)n = unvn ou uv = (u0v0, u1v1, . . .)

• Multiplication par un scalaire : si u est une suite et λ un réel alors λu est la suite
définie par :

∀n ∈ N (λu)n = λun ou λu = (λu0, λu1, . . .)

Propositions

• Le couple
(
RN, +

)
est un groupe abélien.

L’élément neutre est la suite nulle (0)n∈N = (0, 0, 0, . . .)..
L’opposée d’une suite u est la suite −u = (−u0, −u1, −u2, . . .).

• Le triplet
(
RN, +, ×

)
est un anneau commutatif.

L’élément neutre pour la multiplication est la suite constante égale à 1 : (1)n∈N =
(1, 1, 1, . . .).
Ce n’est pas un corps, il n’est pas intègre.

C. Notions de base

Définitions
Une suite réelle (un)n∈N est dite :

constante si ∀n ∈ N un = un+1

croissante si ∀n ∈ N un ⩽ un+1

décroissante si ∀n ∈ N un ⩾ un+1

monotone si elle est croissante ou décroissante

strictement croissante si ∀n ∈ N un < un+1

strictement décroissante si ∀n ∈ N un > un+1

strictement monotone si elle est strictement croissante ou strictement décroissante.
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Chapitre A9. Suites I. Généralités

Définitions
Une suite réelle (un)n∈N est dite :

majorée si ∃M ∈ R ∀n ∈ N un ⩽ M M est alors un majorant de (un).

minorée si ∃ m ∈ R ∀n ∈ N un ⩾ m m est alors un minorant de (un).

bornée si elle est majorée et minorée.

Une suite complexe (un)n∈N est dite :

bornée si la suite réelle (|un|)n∈N est majorée.

Définitions
Une suite réelle ou complexe (un)n∈N est dite :

périodique si ∃T ∈ N∗ ∀n ∈ N un+T = un

stationnaire si elle est constante à partir d’un certain rang :

∃N ∈ N ∀n ⩾ N un = un+1

Remarque. On dit qu’une propriété sur une suite (un) est vraie à partir d’un certain
rang si il existe N ∈ N tel que cette propriété est vraie pour tout n ⩾ N .
Exemple. La suite (un)n∈N est positive à partir d’un certain rang si :

▶▷ Exercice 1.

D. Suites classiques
Remarque. Les définitions et propriétés des suites arithmétiques et géométriques ont été
rappelées.

Proposition
Soit (un)n∈N une suite géométrique de raison q éventuellement complexe.
Alors la suite (un) • converge vers 0 si |q| < 1

• converge vers 1 si q = 1
• diverge dans tous les autres cas.

Remarque. Si q est réel : la suite (un)n∈N converge si et seulement si q ∈ ]−1, 1].
Démonstration. Si q est non-nul on écrit |qn| = |q|n = en ln |q|, ce qui montre que la suite
(qn) converge vers 0 si |q| < 1 et diverge si |q| > 1.
Le cas où |q| = 1 sera vu en TD. □
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Définition (rappel)

Une suite (un) est arithmético-géométrique s’il existe (a, b) ∈ R2 tel que :

∀n ∈ N un+1 = aun + b.

Méthode
• Introduire le réel γ tel que γ = aγ + b.
• Vérifier que la suite (vn) = (un − γ) est géométrique.
• En déduire le terme général de (vn), puis celui de (un).

▶▷ Exercice 2.

Définition
Une suite double-récurrente linéaire est définie par la donnée de u0, u1 et :

∀n ∈ N un+2 = λun+1 + µun

où λ et µ sont deux scalaires.

Remarque. On se ramène à la relation

∀n ∈ N aun+2 + bun+1 + cun = 0

Définition
On définit l’équation caractéristique de la suite :

(C) aλ2 + bλ + c = 0

Théorème
Avec les notations précédentes, en notant ∆ le discriminant de (C) :
• Si ∆ ̸= 0 alors l’équation (C) admet deux solutions λ1 et λ2. Le terme général de

la suite (un) est :
∀n ∈ N un = αλn1 + βλn2

où α et β sont deux constantes.
• Si ∆ = 0 alors l’équation (C) admet une unique solution λ0. Le terme général de la

suite (un) est :
∀n ∈ N un = (αn + β)λn0

où α et β sont deux constantes.

Méthode
• Écrire l’équation caractéristique.
• La résoudre et appliquer le théorème.
• Calculer α et β grâce aux valeurs de u0 et u1.
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Exemple 1. Déterminer le terme général des suites définies par :

a. u0 = −1 u1 = −2 ∀n ∈ N un+2 = 7un+1 − 12un

b. v0 = −1 v1 = 1 ∀n ∈ N vn+2 = vn+1 − 1
4vn

▶▷ Exercices 3, 4.

II. Limites

A. Compléments sur les réels

Propriété de la borne supérieure (axiome)
Toute partie non-vide majorée de R admet un plus petit majorant.

Propriété de la borne inférieure
Toute partie non-vide minorée de R admet un plus grand minorant.

Définitions
• Soit A une partie non-vide majorée.

On appelle borne supérieure de A le plus petit de ses majorants. On le note Sup(A).
• Soit A une partie non-vide minorée.

On appelle borne inférieure de A le plus grand de ses minorants. On le note Inf(A).

Remarque. La propriété de la borne supérieure n’est pas vérifiée par Q.

Proposition
Soit A une partie non-vide majorée de R et s un réel.
Alors s est la borne supérieure de A si et seulement si :

Remarques.
• On dit un majorant et la borne supérieure.
• Si s = Sup A et M est un majorant de A alors :

▶▷ Exercices 5, 6, 7.

Proposition - Définition
Soit A une partie de R.
• Si b est un majorant de A et b appartient à A alors b est la borne supérieure de A.

On dit que b est le maximum de A, et on note b = Max(A).
• Si a est un minorant de A et a appartient à A alors a est la borne inférieure de A.

On dit que a est le minimum de A et on note a = Min(A).
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Exemple 2. L’intervalle [−5, 4[ admet un minimum mais pas de maximum.
Remarque. Si une partie A est finie et non-vide alors elle admet un minimum et un
maximum.

Définition
Si une suite (un) est majorée, alors sa borne supérieure est le plus petit de ses majorants.
C’est le réel s tel que :

Remarques.
• En d’autres termes la borne supérieure de la suite (un) est la borne supérieure de

l’ensemble U = {un | n ∈ N}.
• On définit de même la borne inférieure, le maximum et le minimum d’une suite.

Notations
On note ces réels, s’il sont définis : Sup

n∈N
un Inf

n∈N
un Max

n∈N
un Min

n∈N
un

▶▷ Exercice 8.

Résumé
Soit A une partie de R.
• Un majorant de A est un réel plus grand que tous les éléments de A.
• La borne supérieure est le plus petit des majorants.
• Le maximum est la borne supérieure lorsqu’elle appartient à A.
Soit (un)n∈N une suite.
• Un majorant de (un) est un réel plus grand que tous les éléments de un.
• La borne supérieure est le plus petit des majorants.
• Le maximum est un un plus grand que tous les autres.

B. Suites convergentes

Définitions
Soit ℓ un réel. On dit qu’une suite (un)n∈N converge vers ℓ si :

On note alors : un −−−−→
n→+∞

ℓ ou un → ℓ

Une suite (un) est convergente s’il existe un réel ℓ tel que (un) converge vers ℓ.
Une suite est divergente si elle n’est pas convergente.

6 B. Gonard



Chapitre A9. Suites II. Limites

Exemple. La suite
( 1
n

)
n∈N∗ converge vers 0.

▶▷ Exercice 9.

Proposition (Unicité de la limite)

Si (un) converge vers ℓ et vers ℓ′, alors ℓ = ℓ′.

Définition
Si (un) converge vers ℓ alors on dit que ℓ est la limite de la suite (un). On note :

lim un = ℓ ou lim
n→+∞

un = ℓ

Démonstration dans le cas réel.
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Démonstration dans le cas général. Si, pour un certain entier n :

|un − ℓ| ⩽ ε et |un − ℓ′| ⩽ ε

alors par inégalité triangulaire :

|ℓ′ − ℓ| = |(un − ℓ) − (un − ℓ′)| ⩽ |un − ℓ| + |un − ℓ′| ⩽ 2ε

On obtient une contradiction en choisissant ε = 1
3 |ℓ − ℓ′|. □

Exemple 3. Soit (un) une suite d’entiers : (un) ⊆ Z.
Démontrer que si (un) est convergente alors elle est stationnaire.

Proposition

Toute suite convergente est bornée.

Démonstration.

▶▷ Exercice 10.

C. Opérations sur les limites

Théorème
Soit (un) et (vn) deux suites convergentes, de limites ℓ et ℓ′. Soit λ un scalaire. Alors :
(i) La suite (un + vn) converge vers ℓ + ℓ′.

(ii) La suite (λun) converge vers λℓ.
(iii) La suite (unvn) converge vers ℓℓ′.
(iv) La suite |un| converge vers |ℓ|.
(v) Si ℓ ̸= 0, alors la suite (un) est non-nulle à partir d’un certain rang, et la suiteÄ

1
un

ä
converge vers 1

ℓ
.
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Corollaire
De plus :
(vi) Pour tout (λ, µ) ∈ K2 la suite (λun + µvn) converge vers λℓ + µℓ′.

En d’autres termes, les combinaisons linéaires des suites (un) et (vn) convergent.
(vii) Si ℓ′ ̸= 0 alors la suite quotient

Ä
un

vn

ä
converge vers ℓ

ℓ′
·

Démonstration du corollaire.
Le point (vi) est conséquence des points (ii) et (i).
Le point (vii) est conséquence des points (v) et (iii). □

Lemme 1
Une suite (un) converge vers ℓ si et seulement si la suite (un − ℓ) converge vers 0.

Démonstration. Immédiat. □

Lemme 2
Si (un) est une suite convergeant vers 0 et (vn) est une suite bornée, alors la suite
(unvn) converge vers 0.

Démonstration.
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Démonstration du théorème.
(i) D’après le lemme 1, il suffit de démontrer que si (un) et (vn) convergent vers 0 alors

(un + vn) converge vers 0.

(ii) La suite constante (λ) est bornée, donc d’après le lemme 2 si la suite (un) converge
vers 0, alors la suite (λun) converge vers 0.
Maintenant si la suite (un) converge vers ℓ, alors d’après le lemme 1 la suite (un − ℓ)
converge vers 0, donc la suite (λun − λℓ) converge vers 0, et ainsi la suite (λun)
converge vers λℓ.

(iii) On écrit :

La suite (vn) est bornée car convergente, la suite (un − ℓ) converge vers 0 d’après le
lemme 1, donc d’après le lemme 2 la suite (vn(un − ℓ)) converge vers 0.
La suite (vn−ℓ′) converge vers 0 d’après le lemme 1, donc la suite (ℓ(vn−ℓ′)) converge
vers 0 d’après le (ii).
D’après le (i), la suite (vn(un − ℓ) + ℓ(vn − ℓ′)) converge vers 0.
D’après le lemme 1, la suite (unvn) converge vers ℓℓ′.
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(iv) On utilise l’inégalité triangulaire :

||un| − |ℓ|| ⩽ |un − ℓ|

(v) D’après l’exercice 10 la suite (un) est non-nulle à partir d’un certain rang. On écrit :

Comme la suite (ℓun) converge vers ℓ2 qui est non-nul, alors elle est bornée à partir
d’un certain rang par deux réels strictement positifs. La suite

Ä
1
ℓun

ä
est donc également

bornée.
De plus la suite (un − ℓ) converge vers 0 donc par produit alors la suite

Ä
1
un

− 1
ℓ

ä
converge vers 0, et ainsi la suite

Ä
1
un

ä
converge vers 1

ℓ
. □

D. Limites et inégalités
Remarque. Dans cette partie et la suivante toutes les suites considérées sont réelles.

Lemme
Soit (wn) une suite réelle convergente.
• Si (wn) est positive à partir d’un certain rang alors lim wn est positive.
• Si (wn) est négative à partir d’un certain rang alors lim wn est négative.

Démonstration.
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Théorème de comparaison
Soit (un) et (vn) deux suites réelles convergentes.
(i) Si à partir d’un certain rang un < vn alors lim un ⩽ lim vn.

(ii) Si à partir d’un certain rang un ⩽ vn alors lim un ⩽ lim vn.

Démonstration. Le est conséquence du donc il suffit de démontrer celui-ci.

On pose wn = vn − un. Alors la suite (wn) est positive à partir d’un certain rang, et par
opérations sur les limites elle converge vers lim vn − lim un.
On déduit du lemme précédent que la limite de wn est positive, donc lim un ⩽ lim vn. □

Remarque. L’implication (∀n ⩾ N un < vn) =⇒ lim un < lim vn est fausse.
Contre-exemple. Soit un = 1 − 1

n
et vn = 1 + 1

n
. Alors : ∀n ∈ N∗ un < vn

Pourtant la limite de (un) n’est pas strictement inférieure à celle de (vn), puisqu’elles
valent 1 toutes les deux.

E. Limites infinies

Définition
Une suite réelle (un) tend vers +∞ si :

On note alors : lim un = +∞ ou un → +∞

Une suite réelle (un) tend vers −∞ si :

On note alors : lim un = −∞ ou un → −∞

Remarque. Si (un) tend vers +∞ alors (−un) tend vers −∞, et vice-versa.
Plus généralement, pour λ ∈ R∗, si (un) tend vers +∞ alors (λun) tend vers sgn(λ)∞.

Proposition

(i) Si la suite (un) tend vers +∞ ou vers −∞ alors la suite
Ä

1
un

ä
converge vers 0.

(ii) Si la suite (un) converge vers 0 et est strictement positive à partir d’un certain
rang, alors la suite

Ä
1
un

ä
tend vers +∞.

Si la suite (un) converge vers 0 et est strictement négative à partir d’un certain
rang, alors la suite

Ä
1
un

ä
tend vers −∞.
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Démonstration.
(i)

(ii) Supposons que la suite (un) converge vers 0 et est strictement positive à partir d’un
certain rang.
Soit A un réel.
Si A est négatif alors il est clair qu’à partir d’un certain rang :

∣∣∣ 1
un

∣∣∣ ⩾ A.

Si A est strictement positif alors ε = 1
A

est strictement positif, donc il existe N ∈ N
tel que :

∀n ∈ N n ⩾ N =⇒ |un| ⩽ 1
A

Ceci donne

∀n ∈ N n ⩾ N =⇒
∣∣∣∣ 1
un

∣∣∣∣ ⩾ A

Comme un est strictement positive à partir d’un certain rang alors quitte à augmenter
N on peut supposer que

∣∣∣ 1
un

∣∣∣ = 1
un

.

On a démontré que :

∀A ∈ R ∃N ∈ N ∀n ∈ N n ⩾ N =⇒ 1
un

> A

donc la suite
Ä

1
un

ä
tend vers +∞.

Le cas où (un) est strictement négative à partir d’un certain rang se déduit de ce cas
en remplaçant un par −un. □
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Définitions
On dit qu’une suite admet une limite si elle converge ou tend vers ±∞.
Dans ce cas sa limite est élément de :

Cet ensemble est appelé droite numérique achevée.

Remarque. L’addition et la multiplication ne sont pas des lois de composition interne
de R, elles ne sont pas définies sur R×R tout entier. Les formes indéterminées sont :

Exemple 4. Dans les cas ci-dessus toutes les limites sont possibles.

F. Cas des suites complexes
▶▷ Exercice 11.

Remarque. Pour étudier la convergence d’une suite complexe u : N → C on peut :
• considérer la suite des modules (|un|)n∈N, qui est une suite réelle positive,
• utiliser les deux suites réelles (Re (un))n∈N et (Im (un))n∈N.

Proposition
Soit (un)n∈N une suite complexe.
Si (un) converge vers ℓ alors la suite conjuguée (un)n∈N converge vers ℓ.

Démonstration. C’est immédiat car
∣∣un − ℓ̄

∣∣ =
∣∣un − ℓ

∣∣ = |un − ℓ|. □

Théorème
Soit ℓ un complexe, de forme algébrique ℓ = a + ib.
Alors une suite (un)n∈N converge vers ℓ si et seulement si les suites (Re(un))n∈N et
(Im(un))n∈N convergent respectivement vers a et b.

Démonstration. Si la suite (un) converge vers ℓ alors la suite (un) converge vers ℓ̄ donc
par somme et multiplication par un scalaire la suite

(
un+ūn

2
)

converge vers ℓ+ℓ̄
2 , donc la

suite (Re(un)) converge vers a.
De même la suite (Im(un)) converge vers b.
Réciproquement, si les suites (Re(un)) et (Im(un)) convergent respectivement vers a et b
alors par combinaison linéaire la suite (Re(un) + i Im(un)) converge vers a + ib, donc la
suite (un) converge vers ℓ. □

▶▷ Exercice 12.
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G. Relations de comparaison

Définitions
Soit (un) et (vn) deux suites. On dit que :
• La suite (un) est négligeable devant la suite (vn) s’il existe une suite (εn)n∈N conver-

geant vers 0 telle qu’à partir d’un certain rang un = εnvn.
• La suite (un) est équivalente à la suite (vn) s’il existe une suite (hn)n∈N convergeant

vers 1 telle qu’à partir d’un certain rang un = hnvn.
• La suite (un) est dominée par la suite (vn) s’il existe une suite (Mn)n∈N bornée telle

qu’à partir d’un certain rang un = Mnvn.
On note respectivement dans ces trois cas :

un =
+∞

o(vn) un ∼
+∞

vn un =
+∞

O(vn)

ou : un = o(vn) un ∼ vn un = O(vn)

Remarques.
• Si la suite (vn) ne s’annule pas à partir d’un certain rang alors :

un = o(vn) ⇐⇒ un
vn

−−→ 0

un ∼ vn ⇐⇒ un
vn

−−→ 1

un = O(vn) ⇐⇒ un
vn

est bornée.

• Les propriétés énoncées dans le chapitre A4 sont toujours valables. Par exemple :

un ∼ vn ⇐⇒ un − vn = o(vn).

Proposition

La relation ∼ est une relation d’équivalence.

Démonstration. La réflexivité et la transitivité sont immédiates.
Pour la symétrie : si (un) est équivalente à (vn) alors il existe une suite (hn) convergeant
vers 1 telle qu’à partir d’une certain rang un = hnvn.
On définit une suite (kn)n∈N en posant kn = 1

hn
si hn ̸= 0 et kn = 1 sinon.

Comme (hn) converge vers 1 alors à partir d’un certain rang (hn) est strictement positif
et donc kn = 1

hn
, ce qui montre que kn converge vers 1. De plus à partir d’un certain rang

vn = knun, donc (vn) est équivalente à (un). □
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Proposition
Soit (un) et (vn) deux suites réelles.
Si un ∼ vn alors un et vn ont même signe à partir d’un certain rang.

Démonstration.

III. Théorèmes d’existence de limite
Remarque. Dans toute cette partie les suites considérées sont réelles.

A. Encadrement

Théorème de divergence par comparaison
Soit (un) et (vn) deux suites, telles que un ⩽ vn à partir d’un certain rang.
(i) Si (un) tend vers +∞ alors (vn) tend vers +∞.

(ii) Si (vn) tend vers −∞ alors (un) tend vers −∞.

Démonstration.
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Corollaires
(i) Si (un) tend vers +∞ et (vn) est minorée alors (un + vn) tend vers +∞.

En particulier :
• Si (un) tend vers +∞ et (vn) est convergente alors (un + vn) tend vers +∞.
• Si (un) et (vn) tendent vers +∞ alors (un + vn) tend vers +∞.

(ii) Si (un) tend vers +∞ et (vn) est minorée par un réel strictement positif à partir
d’un certain rang alors (unvn) tend vers +∞.
En particulier :
• Si (un) tend vers +∞ et (vn) converge vers un réel strictement positif alors

(unvn) tend vers +∞.
• Si (un) et (vn) tendent vers +∞ alors (unvn) tend vers +∞.

Démonstration. En exercice. □

Théorème d’encadrement
Soit (un), (vn) et (wn) trois suites. On suppose qu’il existe un entier N tel que :

∀n ∈ N n ⩾ N =⇒ un ⩽ vn ⩽ wn

i.e., un ⩽ vn ⩽ wn à partir d’un certain rang.
Si les suites (un) et (wn) convergent vers la même limite ℓ, alors la suite (vn) converge
vers ℓ.

Remarque. Ce théorème est un théorème d’existence de limite, il prouve d’abord que la
suite (vn) est convergente, puis qu’elle converge vers ℓ.
Exemple 5.
(i) Soit (un) et (vn) deux suites positives telles que :

∀n ∈ N un ⩽ vn

Si (vn) converge vers 0 alors (un) converge vers 0.
(ii) Convergence de la suite (un)n∈N∗ =

Ä
⌊nx⌋
n

ä
où x est un réel.
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Démonstration.

Corollaire
Soit (un), (vn) et (wn) trois suites. On suppose qu’il existe N ∈ N tel que :

∀n ∈ N n ⩾ N =⇒ un ⩽ vn ⩽ wn

Si (un) et (wn) sont équivalentes à une même suite (xn) alors vn ∼ xn.

Démonstration. Comme un ∼ xn et wn ∼ xn alors par transitivité wn ∼ un. Il existe donc
une suite (hn) convergeant vers 1 telle qu’à partir d’un certain rang wn = hnun.
Alors, à partir d’un certain rang :

0 ⩽ vn − un ⩽ wn − un = (hn − 1)un.

Comme (hn − 1) converge vers 0 alors vn − un = o(un) et donc vn ∼ un.
Par transitivité vn ∼ xn. □

▶▷ Exercice 13.
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B. Suites monotones
Rappel. Selon la propriété de la borne supérieure, toute partie non-vide majorée de R
admet une borne supérieure, c’est-à-dire un plus petit majorant.

Théorème de la limite monotone
Toute suite monotone admet une limite. Plus précisément :
Soit (un) une suite croissante.
(i) Si (un) est majorée alors elle est convergente.

(ii) Si (un) n’est pas majorée alors elle tend vers +∞.
Soit (un) une suite décroissante.
(i) Si (un) est minorée alors elle est convergente.

(ii) Si (un) n’est pas minorée alors elle tend vers −∞.

Démonstration. Supposons que la suite (un) est croissante.

On démontre le théorème dans le cas où la suite (un) est décroissante de la même façon,
ou en appliquant le théorème pour la suite (−un). □
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Théorème (complément)
• Une suite croissante majorée converge vers sa borne supérieure.
• Une suite décroissante minorée converge vers sa borne inférieure.

Proposition
Soit A une partie de R non-vide majorée. Alors il existe une suite (an)n∈N∗ d’éléments
de A convergeant vers Sup A.

Démonstration. Soit s = Sup A. Alors pour tout n ∈ N∗ le réel s − 1
n

est strictement
inférieur à s. Il existe donc an ∈ A tel que an > s − 1

n
.

Or comme an appartient à A et s = Sup A alors an ⩽ s. On en déduit s − 1
n
⩽ an ⩽ s,

donc :
∀n ∈ N∗ |s − an| ⩽ 1

n
D’après le théorème d’encadrement la suite (an)n∈N∗ converge vers s. □

C. Lien avec la densité

Proposition - Caractérisation séquentielle de la densité
Soit A une partie de R. Alors les propriétés suivantes sont équivalentes :
(i) A est dense dans R : tout intervalle de R non réduit à un point contient un élément

de A.
(ii) Pour tout réel x il existe une suite (an)n∈N∗ d’éléments de A convergeant vers x.

Démonstration. Supposons que le point (i) est satisfait. Soit x un réel. Pour tout n ∈ N∗

l’ensemble
[
x − 1

n
, x + 1

n

]
est un intervalle non réduit à un point, donc il contient un

élément de A. Notons an un tel élément.
On a construit une suite (an)n∈N∗ vérifiant :

∀n ∈ N |an − x| ⩽ 1
n

D’après le théorème d’encadrement cette suite converge vers x. Le point (ii) est démontré.
Supposons que la partie A satisfait le point (ii). Soit I un intervalle non réduit à un point.
Alors cet intervalle contient deux points a et b tels que a < b. Posons c = a+b

2 , et ε = b−a
2 .

Alors ε est strictement positif, c − ε = a et c + ε = b.
Comme c est un réel alors il existe une suite (an)n∈N∗ d’éléments de A convergeant vers
c. En conséquence, comme ε > 0 alors il existe un entier N tel que :

∀n ∈ N n ⩾ N =⇒ |an − c| ⩽ ε

Ceci donne c − ε ⩽ an ⩽ c + ε, donc an ∈ [a, b]. Comme a et b sont deux éléments de I et
I est un intervalle alors [a, b] ⊆ I, donc an ∈ I. Ainsi I contient bien un élément de A. Le
point (i) est démontré.
On a démontré par double implication que les points (i) et (ii) sont équivalents. □

▶▷ Exercice 14.
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D. Suites adjacentes

Définition
Deux suites (un) et (vn) sont dites adjacentes si
• L’une est croissante et l’autre est décroissante.
• La suite (vn − un) converge vers 0.

Théorème
Si deux suites sont adjacentes alors elles convergent vers la même limite.

Démonstration. Quitte à inverser les deux suites, on suppose que (un) est croissante et
(vn) est décroissante. On démontre le théorème en trois étapes.
1. Montrons que (un) ⩽ (vn) :
Comme (un) est croissante et (vn) est décroissante, alors :

∀n ∈ N un+1 ⩾ un et vn+1 ⩽ vn

Ceci implique :
∀n ∈ N vn+1 − un+1 ⩽ vn − un

donc la suite (vn − un) est décroissante. Par hypothèse cette suite converge vers 0, donc
0 est sa borne inférieure, et ainsi :

∀n ∈ N vn − un ⩾ 0 donc un ⩽ vn

2. Montrons que (un) et (vn) sont convergentes :
La suite (un) est croissante, donc minorée par u0. La suite (vn) est décroissante, donc
majorée par v0. Le point précédent donne :

∀n ∈ N u0 ⩽ un ⩽ vn ⩽ v0

La suite (un) est croissante et majorée par v0, donc par théorème elle converge.
La suite (vn) est décroissante et minorée par u0, donc par théorème elle converge.
3. Montrons que leurs limites sont égales :
Soit ℓ = lim un, ℓ′ = lim vn. Comme lim(vn − un) = 0 alors ℓ′ − ℓ = 0, puis ℓ = ℓ′.
Ainsi (un) est (vn) convergent vers la même limite. □

▶▷ Exercice 15.
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IV. Suites extraites

A. Généralités

Définition
Soit φ : N → N une application strictement croissante, et (un) une suite. La suite

(uφ(n)) = (uφ(0), uφ(1), uφ(2), . . .)

est dite extraite de la suite (un).

Exemples. Les suites suivantes sont extraites de la suite (un) :
(u2n) = (u0, u2, u4, . . .)
(u2n+1) = (u1, u3, u5, . . .)
(un3) = (u0, u1, u8, u27, . . .)

Théorème
Si une suite (un) admet une limite alors toutes ses suites extraites admettent la même
limite.

Démonstration. Soit (uφ(n)) une suite extraite d’une suite (un) admettant ℓ pour limite.
On suppose que ℓ est un réel, les cas où ℓ est infini sont similaires.
Soit ε > 0. Alors il existe N ∈ N tel que pour tout n ∈ N :

n ⩾ N =⇒ |un − ℓ| ⩽ ε

Si n ⩾ N alors φ(n) ⩾ N (car φ(n) ⩾ n, voir lemme ci-dessous). Ceci montre que :
∀ε > 0 ∃N ∈ N ∀n ∈ N n ⩾ N =⇒

∣∣uφ(n) − ℓ
∣∣ ⩽ ε

La suite (uφ(n)) converge bien vers ℓ. □

Lemme
Soit φ : N → N strictement croissante. Alors φ(n) ⩾ n pour tout n ∈ N.

Démonstration. Par récurrence, sachant que si p et q sont deux entiers alors :
p > q =⇒ p ⩾ q + 1 □

▶▷ Exercice 16.
Remarque : décalage. Soit (un) une suite admettant une limite. Pour tout p ∈ N la
suite

(un+p)n∈N = (up, up+1, up+2, . . .)
admet la même limite.
On peut aussi décaler dans l’autre sens, mais alors la suite n’est définie que pour n ⩾ p :

(un−p)n⩾p = (u0, u1, . . .) = (un)n⩾0

Dans ce cas également la suite admet la même limite, mais ce n’est pas conséquence du
théorème précédent.
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Proposition
Soit (un)n∈N une suite. Si les suites extraites (u2n)n∈N et (u2n+1)n∈N tendent vers la
même limite (finie ou infinie) alors la suite (un)n∈N tend aussi vers cette limite.

Démonstration. On traite le cas où les suites (u2n) et (u2n+1) convergent. Les cas où la
limite est infinie sont similaires.
Supposons que les suites (u2n) et (u2n+1) convergent vers une limite commune ℓ.
Démontrons que la suite (un) converge également vers ℓ.
Soit ε un réel strictement positif. Comme les suites (u2n) et (u2n+1) convergent vers ℓ alors
il existe deux entiers N0 et N1 tels que :

∀n ∈ N n ⩾ N0 =⇒ |u2n − ℓ| ⩽ ε

et n ⩾ N1 =⇒ |u2n+1 − ℓ| ⩽ ε

De façon équivalente :

∀k ∈ N 2k ⩾ 2N0 =⇒ |u2k − ℓ| ⩽ ε (1)
et 2k + 1 ⩾ 2N1 + 1 =⇒ |u2k+1 − ℓ| ⩽ ε (2)

On pose N = Max {2N0, 2N1 + 1}.
Soit n un entier supérieur à N . Alors n est supérieur à 2N0 et à 2N1 + 1.
De plus n est pair ou impair.
Si n est pair alors il existe k ∈ N tel que n = 2k. On a supposé que n ⩾ 2N0, donc
2k ⩾ 2N0, puis (1) donne |u2k − ℓ| ⩽ ε et donc |un − ℓ| ⩽ ε.
Si n est impair alors il existe k ∈ N tel que n = 2k + 1. On a supposé que n ⩾ 2N1 + 1,
donc 2k + 1 ⩾ 2N1 + 1, puis (2) donne |u2k+1 − ℓ| ⩽ ε et donc |un − ℓ| ⩽ ε.
Finalement, que n soit impair ou pair on a obtenu |un − ℓ| ⩽ ε. On a donc démontré :

∀ε > 0 ∃N ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

Ceci prouve que la suite (un) converge vers ℓ. □
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B. Théorème de Bolzano-Weierstrass

Théorème de Bolzano-Weierstrass
Toute suite bornée admet une suite extraite convergente.

Démonstration dans le cas réel. Soit (un)n∈N une suite réelle bornée, m et M un minorant
et un majorant de (un), si bien que :

∀n ∈ N m ⩽ un ⩽ M

On démontre le théorème en trois étapes.
1. Construction d’une suite de segments emboîtés.
On applique le procédé de dichotomie pour construire par récurrence deux suites (an) et
(bn) telles que pour tout n ∈ N le segment [an, bn] contienne une infinité de termes de la
suite u.
Initialisation. On pose a0 = m, b0 = M . Comme la suite (un) est incluse dans le segment
[m, M ] alors le segment [a0, b0] contient une infinité de termes un puisqu’il les contient
tous.
De plus b0 − a0 = M − m, donc le segment [a0, b0] est de longueur M − m.
Hérédité. Supposons définis deux réels an et bn tels que le segment [an, bn] contienne une
infinité de termes de la suite u.
Soit cn = an+bn

2 . Alors l’un des segments [an, cn] et [cn, bn] contient une infinité de termes
uk. De plus : an ⩽ cn ⩽ bn.
Si [an, cn] est dans ce cas alors on définit an+1 = an et bn+1 = cn. Sinon on définit an+1 = cn
et bn+1 = bn. Alors le segment [an+1, bn+1] contient une infinité de termes uk.
Dans les deux cas : an ⩽ an+1 ⩽ bn+1 ⩽ bn et bn+1 − an+1 = bn−an

2

En effet :
bn+1 − an+1 = cn − an = an + bn

2 − an = bn − an
2

ou bn+1 − an+1 = bn − cn = bn − an + bn
2 = bn − an

2
Conclusion. On a construit par récurrence deux suites (an) et (bn) telles que pour tout
n ∈ N le segment [an, bn] contienne une infinité de termes de la suite u.
De plus on a démontré que :

∀n ∈ N an ⩽ an+1 bn+1 ⩽ bn et bn+1 − an+1 = bn − an
2

Les deux premières inégalités montrent que la suite (an) est croissante et la suite (bn) est
décroissante. La troisième égalité montre que la suite (bn − an) est géométrique de raison
1
2 . Son premier terme est b0 − a0 = M − m, donc :

∀n ∈ N bn − an = M − m

2n
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Ainsi la suite (bn − an) converge vers 0.
Finalement (an) est croissante, (bn) est décroissante, leur différence converge vers 0 donc
ces deux suites sont adjacentes.
Par théorème elles convergent vers une limite ℓ.
2. Construction d’une suite extraite.
On construit par récurrence une suite extraite (uφ(n)) encadrée par les suites (an) et (bn).
Initialisation. On pose φ(0) = 0, si bien que uφ(0) = u0. Alors uφ(0) ∈ [m, M ] car le
segment [m, M ] contient toute la suite (un). Ainsi a0 ⩽ uφ(0) ⩽ b0.
Hérédité. Supposons défini uφ(n) avec an ⩽ uφ(n) ⩽ bn.
Le segment [an+1, bn+1] contient une infinité de termes uk. Il contient donc un uk pour k
strictement supérieur à φ(n), puisque φ(n) est fini. On pose φ(n + 1) = k, si bien que
φ(n + 1) > φ(n), et an+1 ⩽ uφ(n+1) ⩽ bn+1.
Conclusion. On a construit par récurrence une suite (uφ(n)) comprise entre les suites (an)
et (bn). Cette suite est bien extraite de la suite (un) car la fonction φ est strictement
croissante : ∀n ∈ N φ(n + 1) > φ(n)
3. La suite extraite est convergente.
On sait que : ∀n ∈ N an ⩽ uφ(n) ⩽ bn

De plus les suites (an) et (bn) convergent vers le même réel ℓ.
Par théorème d’encadrement la suite extraite (uφ(n)) converge vers ℓ.
On a démontré que la suite (un) admet une suite extraite convergente. □

Démonstration dans le cas complexe. Soit (un) une suite complexe bornée.
On sait que pour tout complexe z : |Re z| ⩽ |z| et |Im z| ⩽ |z|.
Ceci montre que les suites réelles (Re(un)) et (Im(un)) sont bornées.
D’après le théorème de Bolzano-Weierstrass dans le cas réel il existe une suite extraite
(Re(uφ(n))) convergente.
La suite (Im(uφ(n))) est extraite de la suite (Im(un)) donc elle est bornée, et d’après le
théorème de Bolzano-Weierstrass dans le cas réel il existe une suite extraite (Im(uφ◦ψ(n)))
convergente.
La suite (Re(uφ◦ψ(n))) est extraite de la suite (Re(uφ(n))) qui est convergente donc elle est
convergente.
Les deux suites (Re(uφ◦ψ(n))) et (Im(uφ◦ψ(n))) sont convergentes donc la suite extraite
(uφ◦ψ(n)) est convergente. □
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C. Valeurs d’adhérence

Définition
Soit (un)n∈N une suite. Un réel a est valeur d’adhérence de la suite (un) si :

Remarque. De façon équivalente, le réel a est valeur d’adhérence de la suite (un) si pour
tout ε > 0 l’intervalle [a − ε, a + ε] contient une infinité de termes de la suite.

Proposition
Soit (un)n∈N une suite et a un réel. Alors a est valeur d’adhérence de la suite (un) si
et seulement s’il existe une suite extraite de (un) convergeant vers a.

Démonstration. Soit a une valeur d’adhérence de la suite (un).
On construit par récurrence une suite (uφ(n))n∈N convergeant vers a.
Initialisation. On pose φ(0) = 0.
Hérédité. Supposons, pour un k ∈ N, que φ(k) est défini. Soit N = φ(k) + 1. Comme a
est valeur d’adhérence alors il existe n ⩾ N tel que |un − a| ⩽ 1

k+1 . On pose φ(k + 1) = n.
Alors φ(k + 1) > φ(k) et

∣∣uφ(k+1) − a
∣∣ ⩽ 1

k+1 .
Conclusion. On a construit une suite extraite (uφ(k)) car la fonction φ est strictement
croissante. D’après le théorème d’encadrement cette suite converge vers a.
Réciproquement, supposons qu’il existe une suite extraite (uφ(n)) convergeant vers a. Soit
ε > 0 et N ∈ N. Alors il existe M ∈ N tel que :

∀n ∈ N n ⩾ M =⇒
∣∣uφ(n) − a

∣∣ ⩽ ε

Ainsi par exemple pour n = Max {N, M} on a
∣∣uφ(n) − a

∣∣ ⩽ ε.
Ceci montre que a est valeur d’adhérence de la suite (un), et achève la démonstration. □
Remarques.
• Le théorème de Bolzano-Weierstrass peut donc s’énoncer : toute suite bornée admet

une valeur d’adhérence.
• Soit (un)n∈N une suite. Les valeurs d’adhérence de (un) sont les limites des suites

extraites convergentes de (un).
Exemple. La suite ((−1)n)n∈N admet deux valeurs d’adhérences : 1 et −1.
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