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Chapitre A9
Suites

I. Généralités

A. Définitions

ﬁ[ Définitions ]
Une suite a valeurs réelles indexée par IN est une application :

u: IN — R
n — U,

On note u, I'image de 'entier n par 'application u, au lieu de u(n).

On définit aussi les suites a valeurs complexes, les suites indéxées par IN*, etc.

Exemple. La suite (l

n ) nelN*
_ | Notations

e Une suite peut étre notée :  u  ou (Up)new ou  (ug,us,us, . ..)

est indexées par IN*.

e Si A est un réel, on note (\),en la suite constante égale a \.
e On note RN I'ensemble des suites & valeurs réelles indexées par IN.

On définit de méme CN, RN", etc.

ﬁ( Modes de définition )

On peut définir une suite de plusieurs facons.

o Définition explicite : Vn e N Uy = 3" — 2
« Définition par récurrence : wup=1 et VneN u,; =1—u2/2
e Définition implicite : pour tout n € N, soit u,, la solution positive de I’équa-

tion ™ +x — 1.
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Chapitre A9. Suites [. Généralités

B. Opérations

,_( Définitions ]

L’ensemble RN est muni des opérations suivantes.

» Addition : si u et v sont deux suites, alors u + v est la suite définie par :
VneN (u+v), =u,+v, ou u~+v = (up + vo,u1 +v1,...)
* Multiplication : si u et v sont deux suites, alors uv est la suite définie par :
VnelN (uwv), = u,v, ou uv = (ugvg, U101, - - -)

o Multiplication par un scalaire : si u est une suite et A un réel alors Au est la suite
définie par :

Vne N (Au), = Auy, ou A = (Aug, Aug, .. .)

ﬁ[ Propositions ]

e Le couple (IR]N, +) est un groupe abélien.
L’élément neutre est la suite nulle (0),en = (0,0,0,...)..
L’opposée d’'une suite u est la suite —u = (—ug, —u1, —us, .. .).
e Le triplet (]R]N, +, ><) est un anneau commutatif.
L’élément neutre pour la multiplication est la suite constante égale a 1 : (1),eny =
(1,1,1,...).
Ce n’est pas un corps, il n’est pas integre.

C. Notions de base

/_( Définitions ]

Une suite réelle (u,),en est dite :

constante si VneN wu, =u,1
croissante si VneN wu, <up
décroissante si Vne N wu, > upsi
monotone si elle est croissante ou décroissante

strictement croissante si Vn € N wu, < upiq
strictement décroissante si Vn € N u, > upiq

strictement monotone  si elle est strictement croissante ou strictement décroissante.
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Chapitre A9. Suites [. Généralités

,_( Définitions ]

Une suite réelle (uy,)nen est dite :

magjorée si AM € R Vne N w, <M M est alors un majorant de (uy,).
minorée si dmeR VnelN wu,>m m est alors un minorant de (uy,).

bornée  si elle est majorée et minorée.

Une suite complexe (u,)nen est dite :

bornée  si la suite réelle (|u,|)nen est majorée.

ﬁ( Définitions ]

Une suite réelle ou complexe (uy,)en est dite :

périodique si dJTelN* VneN u,r =u,
stationnaire si elle est constante a partir d’un certain rang :

dANeN Vn>N u, =u,

Remarque. On dit qu’une propriété sur une suite (u,) est vraie d partir d’un certain
rang si il existe N € IN tel que cette propriété est vraie pour tout n > N.

Exemple. La suite (u,)n,en est positive a partir d’un certain rang si :

Exercice 1.

D. Suites classiques

Remarque. Les définitions et propriétés des suites arithmétiques et géométriques ont été
rappelées.

ﬁ[ Proposition ]

Soit (uy,)nen une suite géométrique de raison ¢ éventuellement complexe.

Alors la suite (u,) ¢ converge vers 0 si |¢| < 1
e converge vers 1 siqg=1

 diverge dans tous les autres cas.

Remarque. Si ¢ est réel : la suite (u,),en converge si et seulement si ¢ € |—1,1].

Démonstration. Si ¢ est non-nul on écrit |¢”| = |¢|" = e"™™l9l ce qui montre que la suite
(¢™) converge vers 0 si |q| < 1 et diverge si |g| > 1.
Le cas ou |¢q| = 1 sera vu en TD. O
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/_[ Définition (rappel) ]

Une suite (u,) est arithmético-géométrique s’il existe (a,b) € R? tel que :

Vn e N Upt1 = aUy, + b.

Méthode |
 Introduire le réel v tel que v = ay + b.

e Vérifier que la suite (v,) = (u,, — 7y) est géométrique.

e En déduire le terme général de (v,), puis celui de (uy,).

> Exercice 2.

_ | Définition

Une suite double-récurrente linéaire est définie par la donnée de ug, uy et :

Vn € N Upt2 = )\unJrl + pup

ol A et p sont deux scalaires.

Remarque. On se rameéne a la relation
Vn e N AUy yo + bupiq + cu, =0

_ | Définition

On définit I'équation caractéristique de la suite :

(C) ar> +bA+c=0

_| Théoréme

Avec les notations précédentes, en notant A le discriminant de (C) :
e Si A # 0 alors I"équation (C') admet deux solutions A\; et A\o. Le terme général de
la suite (u,,) est :
Vn e N w, = aA] + A}

ou « et [ sont deux constantes.

e Si A =0 alors I’équation (C') admet une unique solution \g. Le terme général de la
suite (u,) est :
VneN wu, = (an+ B)A)

ou « et [ sont deux constantes.

Méthode |

o Ecrire ’équation caractéristique.
e La résoudre et appliquer le théoreme.
o Calculer «v et 5 grace aux valeurs de ug et uy.
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Exemple 1. Déterminer le terme général des suites définies par :

a. ug = —1 U = —2 VneN upio="Tu,r1 — 12u,

v = —1 v =1 Vn € N vn+2:vn+1—ivn

Exercices 3, 4.

II. Limites

A. Compléments sur les réels

/_( Propriété de la borne supérieure (axiome) ]

Toute partie non-vide majorée de R admet un plus petit majorant.

ﬁ[ Propriété de la borne inférieure J

Toute partie non-vide minorée de R admet un plus grand minorant.

ﬁ( Définitions |
e Soit A une partie non-vide majorée.

On appelle borne supérieure de A le plus petit de ses majorants. On le note Sup(A).

e Soit A une partie non-vide minorée.

On appelle borne inférieure de A le plus grand de ses minorants. On le note Inf(A).

Remarque. La propriété de la borne supérieure n’est pas vérifiée par Q.

ﬁ[ Proposition ]

Soit A une partie non-vide majorée de R et s un réel.
Alors s est la borne supérieure de A si et seulement si :

Remarques.
e On dit un majorant et la borne supérieure.

e Sis=SupA et M est un majorant de A alors :

Exercices 5, 6, 7.

/_( Proposition - Définition ]
Soit A une partie de R.
e Si b est un majorant de A et b appartient a A alors b est la borne supérieure de A.

On dit que b est le mazimum de A, et on note b = Max(A).

e Si a est un minorant de A et a appartient a A alors a est la borne inférieure de A.

On dit que a est le minimum de A et on note a = Min(A).
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Exemple 2. L’intervalle [—5,4[ admet un minimum mais pas de maximum.

Remarque. Si une partie A est finie et non-vide alors elle admet un minimum et un
maximum.

_ | Définition

Si une suite (u,) est majorée, alors sa borne supérieure est le plus petit de ses majorants.
Cest le réel s tel que :

Remarques.

e En d’autres termes la borne supérieure de la suite (u,) est la borne supérieure de
I'ensemble U = {u,, | n € N}.

e On définit de méme la borne inférieure, le maximum et le minimum d’une suite.

Notations

On note ces réels, s’il sont définis : Supw, Inf w, Maxwu, Minu,
nelN nelN nelN nelN

Exercice 8.

_| Résumé )
Soit A une partie de R.

e Un majorant de A est un réel plus grand que tous les éléments de A.

e La borne supérieure est le plus petit des majorants.

e Le maximum est la borne supérieure lorsqu’elle appartient a A.

Soit (uy)nen une suite.

e Un majorant de (u,) est un réel plus grand que tous les éléments de w,,.
e La borne supérieure est le plus petit des majorants.

¢ Le maximum est un u, plus grand que tous les autres.

B. Suites convergentes

/_( Définitions ]

Soit ¢ un réel. On dit qu’une suite (u,)new converge vers £ si :

On note alors :  w,, —— ¢ ou Uy — 1

n—-+o0o

Une suite (u,,) est convergente s’il existe un réel ¢ tel que (u,) converge vers /.

Une suite est divergente si elle n’est pas convergente.
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Chapitre A9. Suites

II. Limites

Exemple. La suite (—

1
n

)ne]N*

converge vers (.

> Exercice 9.

[ Proposition (Unicité de la limite) |

.

Si (u,) converge vers ¢ et vers ¢/, alors { = (.

_ | Définition

Si (u,,) converge vers £ alors on dit que ¢ est la limite de la suite (u,). On note :

limwu, =/

ou

lim w, =/
n—-+0o0o

Démonstr

ati

dax

1s |

€ C

as

réel.
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Démonstration dans le cas général. Si, pour un certain entier n :

lu, =0 <e et Ju,— 0] <e
alors par inégalité triangulaire :
0 =) = [(tn = 0) = (tn — )] < Jttn = £ + |un — 0] < 2¢

On obtient une contradiction en choisissant ¢ = £|¢ — ¢]. O
Exemple 3. Soit (u,) une suite d’entiers : (u,) C Z.

Démontrer que si (u,,) est convergente alors elle est stationnaire.

(_[ Proposition ]

Toute suite convergente est bornée.

Démonstration.

Exercice 10.

C. Opérations sur les limites

_ [ Théoréme

Soit (uy) et (v,) deux suites convergentes, de limites £ et . Soit A un scalaire. Alors :

(i) La suite (u, + v,) converge vers £ + (.
(ii) La suite (Au,) converge vers A(.
(#ii) La suite (u,v,) converge vers (/0.
(iv) La suite |u,| converge vers ||.

(v) Si € # 0, alors la suite (u,) est non-nulle a partir d'un certain rang, et la suite
1

(L converge vers 5.
Up, l
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_| Corollaire

De plus :
(vi) Pour tout (\, ) € K? la suite (Au, + pv,) converge vers A\ + uf'.
En d’autres termes, les combinaisons linéaires des suites (uy,) et (v,) convergent.

(vit) Si €' # 0 alors la suite quotient (Z—:) converge vers -

Démonstration du corollaire.

Le point (vi) est conséquence des points (i) et (7).

Le point (vii) est conséquence des points (v) et (iii). O

Une suite (u,,) converge vers ¢ si et seulement si la suite (u,, — ¢) converge vers 0. ’

Démonstration. Immédiat. O

| Lemme 2

Si (uy,) est une suite convergeant vers 0 et (v,) est une suite bornée, alors la suite
(unvy,) converge vers 0.

Démonstration.
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Chapitre A9. Suites II. Limites
Démonstration du théoreme.
1) D’apres le lemme 1. il suffit de démontrer que si (u,) et (v,,) convergent vers 0 alors
u, +v,) converge vers (0

(7i) La suite constante () est bornée, donc d’apres le lemme 2 si la suite (u,) converge
vers 0, alors la suite (Au,) converge vers 0.

Maintenant si la suite (u,,) converge vers ¢, alors d’apres le lemme 1 la suite (u,, — )
converge vers 0, donc la suite (Au, — Al) converge vers 0, et ainsi la suite (Auy,)
converge vers A/L.

(7ii) On écrit :

La suite (v,) est bornée car convergente, la suite (u,, — ¢) converge vers 0 d’apres le
lemme 1, donc d’apres le lemme 2 la suite (v, (u, — ¢)) converge vers 0.

La suite (v, —¢') converge vers 0 d’apres le lemme 1, donc la suite (¢(v,, —¢')) converge
vers 0 d’apres le (7).

D’apres le (i), la suite (v, (un, — £) + (v, — ¢')) converge vers 0.

D’apres le lemme 1, la suite (u,v,) converge vers £¢'.

10
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Chapitre A9. Suites II. Limites

(iv)

(v)

On utilise 'inégalité triangulaire :

| = €]} < Jun = ]

D’apres 'exercice 10 la suite (u,) est non-nulle a partir d’un certain rang. On écrit :

Comme la suite (fu,) converge vers ¢? qui est non-nul, alors elle est bornée & partir
1

d’un certain rang par deux réels strictement positifs. La suite (m—n) est donc également
bornée.
De plus la suite (u,, — ¢) converge vers 0 donc par produit alors la suite (u— — %)

converge vers 0, et ainsi la suite (%) converge vers % U
n

D. Limites et inégalités

Remarque. Dans cette partie et la suivante toutes les suites considérées sont réelles.

| Lemme

Soit (w,) une suite réelle convergente.

Si (wy) est positive a partir d’un certain rang alors lim w,, est positive.

Si (wy,) est négative a partir d’un certain rang alors lim w,, est négative.

Démonstration.
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Théoréme de comparaison ]

Soit (uy) et (v,) deux suites réelles convergentes.
(i) Si a partir d'un certain rang w, < v, alors limu, <limuv,.
(77) Si a partir d’un certain rang  wu, < v, alors limu, <limuv,.

Démonstration. Le est conséquence du donc il suffit de démontrer celui-ci.

On pose w,, = v, — u,. Alors la suite (w,) est positive & partir d'un certain rang, et par
opérations sur les limites elle converge vers lim v,, — lim u,,.

On déduit du lemme précédent que la limite de w, est positive, donc lim u,, < limv,. O
Remarque. L'implication (Yn> N wu, <v,) = limu, <limwv, est fausse.
Contre-exemple. Soit u, =1 — % et v, =1+ % Alors : Vne IN*  wu, <uw,

Pourtant la limite de (u,) n’est pas strictement inférieure a celle de (v,), puisqu’elles
valent 1 toutes les deux.

E. Limites infinies

_ | Définition

Une suite réelle (u,) tend vers +oo si :

On note alors :  limu, = +00 ou wu, — +

Une suite réelle (u,) tend vers —oo si :

On note alors :  limwu, = —0co0 ou u, — —00

Remarque. Si (u,,) tend vers +oo alors (—u,,) tend vers —oo, et vice-versa.

Plus généralement, pour A\ € R*, si (u,) tend vers +oo alors (Au,) tend vers sgn(\)oo.

ﬁ( Proposition ]

(1) Si la suite (u,) tend vers 400 ou vers —oo alors la suite (%) converge vers 0.

(77) Si la suite (u,) converge vers 0 et est strictement positive & partir d'un certain

rang, alors la suite (%) tend vers +o0.

n

Si la suite (u,) converge vers 0 et est strictement négative a partir d’un certain

rang, alors la suite (i
U

n

) tend vers —oo.
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Démonstration.

i)

(77) Supposons que la suite (u,) converge vers 0 et est strictement positive a partir d'un
certain rang.

Soit A un réel.

Si A est négatif alors il est clair qu’a partir d’un certain rang : ‘i’ > A.

Si A est strictement positif alors e = % est strictement positif, donc il existe N € IN
tel que :

1
Vn e N n}N:>]Un!<Z
Ceci donne
Vn € N n>N=—=|—|2A
Up,

Comme u,, est strictement positive a partir d’un certain rang alors quitte a augmenter
11
N on peut supposer que ‘un‘ = o

On a démontré que :

1
VA c R AN € IN Vn € IN n>N=—=—>A
Up,

donc la suite ( ul) tend vers +o0.

n

Le cas ou (u,) est strictement négative a partir d'un certain rang se déduit de ce cas
en remplacant u, par —u,. 0
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ﬁ( Définitions ]

On dit qu’'une suite admet une limite si elle converge ou tend vers £oo.

Dans ce cas sa limite est élément de :

Cet ensemble est appelé droite numérique achevée.

Remarque. L’addition et la multiplication ne sont pas des lois de composition interne
de R, elles ne sont pas définies sur R x R tout entier. Les formes indéterminées sont :

Exemple 4. Dans les cas ci-dessus toutes les limites sont possibles.

F. Cas des suites complexes

Exercice 11.

Remarque. Pour étudier la convergence d’une suite complexe u : IN — C on peut :
* considérer la suite des modules (|u,|)nen, qui est une suite réelle positive,

o utiliser les deux suites réelles (Re (uy))nen et (Im (u,))nen-

Proposition ]

Soit (uy,)nen une suite complexe.
Si (uy,) converge vers £ alors la suite conjuguée (uy,)n,en converge vers £.

Démonstration. C’est immédiat car ’Tn — Z‘ = }un — €| = |u, — /. d

Théoréme

Soit £ un complexe, de forme algébrique ¢ = a + b.
Alors une suite (uy,),en converge vers ¢ si et seulement si les suites (Re(uy))nen et
(Im(uy,))nen convergent respectivement vers a et b.

Démonstration. Si la suite (u,) converge vers ¢ alors la suite (u,) converge vers ¢ donc

Un+Un H
Hin) converge vers <, donc la

par somme et multiplication par un scalaire la suite (
suite (Re(uy,)) converge vers a.

De méme la suite (Im(u,,)) converge vers b.

Réciproquement, si les suites (Re(u,)) et (Im(u,,)) convergent respectivement vers a et b
alors par combinaison linéaire la suite (Re(u,) 4 ¢Im(u,)) converge vers a + ib, donc la
suite (u,) converge vers /. O

Exercice 12.
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G. Relations de comparaison

,_( Définitions |
Soit (uy) et (v,) deux suites. On dit que :

o La suite (uy,) est négligeable devant la suite (v,) s'il existe une suite (£,,),en conver-
geant vers 0 telle qu’a partir d’'un certain rang u,, = ,v,.

 La suite (u,) est équivalente a la suite (v,) s’il existe une suite (h,,),en convergeant
vers 1 telle qu’a partir d’'un certain rang u,, = h,v,.

o La suite (u,) est dominée par la suite (v,) s’il existe une suite (M, )en bornée telle
qu’a partir d'un certain rang w,, = M,v,.

On note respectivement dans ces trois cas :

Un = o(vn) Un 0 Un Un = O(vn)
ou : Up, = 0(vy,) Uy, ~ Uy up, = O(vy)
J
Remarques.
e Si la suite (v,) ne s’annule pas a partir d'un certain rang alors :
Unp,
Up, = 0(vy,) — — —0
Un,
u
Up, ~ Uy <= - 1
Un,
un 7
up = O(vy,) = — est bornée.
/U'fl
e Les propriétés énoncées dans le chapitre A4 sont toujours valables. Par exemple :
Up ~ Uy — Uy — Vp = 0(vy,).
Proposition ]
La relation ~ est une relation d’équivalence. J

Démonstration. La réflexivité et la transitivité sont immédiates.

Pour la symétrie : si (u,) est équivalente a (v,) alors il existe une suite (h,,) convergeant
vers 1 telle qu’a partir d'une certain rang u,, = h,v,.

On définit une suite (ky,),en en posant k, = hi si h, # 0 et k, = 1 sinon.

Comme (h,,) converge vers 1 alors a partir d'un certain rang (h,) est strictement positif
et donc k,, = i, ce qui montre que k,, converge vers 1. De plus a partir d’un certain rang
Uy, = knty,, donc (v,) est équivalente & (u,). O
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/_[ Proposition J

Soit (uy) et (v,) deux suites réelles.
Si u,, ~ v, alors u,, et v, ont méme signe a partir d’'un certain rang.

Démonstration.

III. Théorémes d’existence de limite

Remarque. Dans toute cette partie les suites considérées sont réelles.

A. Encadrement

Théoreme de divergence par comparaison ]

Soit (u,) et (v,) deux suites, telles que u,, < v, a partir d'un certain rang.
(i) Si (u,) tend vers o0 alors (v,) tend vers +oo.
(ii) Si (v,,) tend vers —oo alors (u,) tend vers —oo.

Démonstration.
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ﬁ( Corollaires ]

(i) Si (u,) tend vers +00 et (v,) est minorée alors (u, + v,) tend vers +oo.

En particulier :
e Si (uy,) tend vers +00 et (v,) est convergente alors (u, + v,) tend vers +o0.
e Si(uy) et (vy,) tendent vers oo alors (u, + v,) tend vers +o0.

(7i) Si (u,) tend vers +o00 et (v,,) est minorée par un réel strictement positif a partir
d’un certain rang alors (u,v,) tend vers +oc.

En particulier :

e Si (uy,) tend vers +oo et (v,) converge vers un réel strictement positif alors
(unvy,) tend vers +oo.

o Si (uy) et (v,) tendent vers o0 alors (u,v,) tend vers +oo.

Démonstration. En exercice. O

/_( Théoréeme d’encadrement }

Soit (uy), (v,) et (w,) trois suites. On suppose qu’il existe un entier N tel que :

Vn € N nz2N — u,<v,<w,

e, U, < v, < W, a partir d'un certain rang.
Si les suites (u,) et (w,) convergent vers la méme limite ¢, alors la suite (v,) converge
vers /.

J
Remarque. Ce théoréme est un théoreme d’existence de limite, il prouve d’abord que la
suite (v,) est convergente, puis qu’elle converge vers ¢.

Exemple 5.

(1) Soit (u,) et (v,) deux suites positives telles que :
Vn € N Uy < Uy,

Si (v,) converge vers 0 alors (u,) converge vers 0.

(7i) Convergence de la suite (up)pens = <%> ou z est un réel.

B. Gonard 17
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Démonstration.

_| Corollaire

Soit (un), (v,) et (wy,) trois suites. On suppose qu’il existe N € IN tel que :

VYn € N n>N — ungvngwn

Si (up) et (w,) sont équivalentes a une méme suite (x,,) alors v, ~ .
A

Démonstration. Comme u,, ~ x,, et w, ~ x, alors par transitivité w, ~ u,. Il existe donc
une suite (h,,) convergeant vers 1 telle qu’a partir d’'un certain rang w,, = h,u,.

Alors, a partir d’un certain rang :
0 < vy —up < wp —uy = (hy — 1)uy,.

Comme (h,, — 1) converge vers 0 alors v,, — u,, = o(u,) et donc v,, ~ u,,.
Par transitivité v,, ~ z,,. ]

Exercice 13.
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B. Suites monotones

Rappel. Selon la propriété de la borne supérieure, toute partie non-vide majorée de R
admet une borne supérieure, c¢’est-a-dire un plus petit majorant.

,_[ Théoréme de la limite monotone )

Toute suite monotone admet une limite. Plus précisément :
Soit (u,) une suite croissante.
(i) Si (uy,) est majorée alors elle est convergente.
(71) Si (u,) n’est pas majorée alors elle tend vers +oo.
Soit (u,) une suite décroissante.
(i) Si (uy,) est minorée alors elle est convergente.

(1) Si (u,) n’est pas minorée alors elle tend vers —oo.

Démonstration. Supposons que la suite (u,) est croissante.

On démontre le théoreme dans le cas ou la suite (u,) est décroissante de la méme fagon,
ou en appliquant le théoréme pour la suite (—uy,). O
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Chapitre A9. Suites III. Théoremes d’existence de limite

Théoréme (complément) ]

e Une suite croissante majorée converge vers sa borne supérieure.
» Une suite décroissante minorée converge vers sa borne inférieure.

Proposition ]

Soit A une partie de R non-vide majorée. Alors il existe une suite (a,)nen+ d’éléments
de A convergeant vers Sup A.

Démonstration. Soit s = Sup A. Alors pour tout n € IN* le réel s — % est strictement

inférieur a s. Il existe donc a,, € A tel que a, > s — %

Or comme a,, appartient a A et s = Sup A alors a,, < s. On en déduit s — % < a, < s,
donc :

1
Vn € IN* |s —a,| < —
n
D’apres le théoreme d’encadrement la suite (a,)nen+ converge vers s. O

C. Lien avec la densité

Proposition - Caractérisation séquentielle de la densitéj

Soit. A une partie de R. Alors les propriétés suivantes sont équivalentes :
(i) A est dense dans R : tout intervalle de R non réduit & un point contient un élément
de A.

(77) Pour tout réel x il existe une suite (a,)n,en+ d’éléments de A convergeant vers x.

Démonstration. Supposons que le point (7) est satisfait. Soit x un réel. Pour tout n € IN*
I’ensemble [x — %,x + ﬂ est un intervalle non réduit a un point, donc il contient un
élément de A. Notons a,, un tel élément.

On a construit une suite (a,)nen+ vérifiant :

1
Vn e N la, — x| < —
n

D’apres le théoréme d’encadrement cette suite converge vers x. Le point (77) est démontré.

Supposons que la partie A satisfait le point (7). Soit I un intervalle non réduit & un point.
Alors cet intervalle contient deux points a et b tels que a < b. Posons ¢ = ‘%Lb, et e = I’_Ta
Alors ¢ est strictement positif, c—e=a et c+ec =0b.

Comme c¢ est un réel alors il existe une suite (a,)pen+ d’éléments de A convergeant vers
c. En conséquence, comme £ > 0 alors il existe un entier NV tel que :

Vn e N n>N = |a,—c|<c¢

Ceci donne ¢ — ¢ < a, < ¢+ ¢, donc a,, € [a,b]. Comme a et b sont deux éléments de I et
I est un intervalle alors [a,b] C I, donc a,, € I. Ainsi I contient bien un élément de A. Le
point (7) est démontré.

On a démontré par double implication que les points (i) et (ii) sont équivalents. O

Exercice 14.

20 B. Gonard



Chapitre A9. Suites III. Théoremes d’existence de limite

D. Suites adjacentes

_ | Définition

Deux suites (u,) et (v,) sont dites adjacentes si

e L’une est croissante et ’autre est décroissante.
e La suite (v, — u,) converge vers 0.

| Théoréme ~

Si deux suites sont adjacentes alors elles convergent vers la méme limite.

)

Démonstration. Quitte a inverser les deux suites, on suppose que (u,) est croissante et
(vn) est décroissante. On démontre le théoreme en trois étapes.

1. Montrons que (u,) < (v,) :
Comme (u,) est croissante et (v,) est décroissante, alors :
Vn e N Un+1 > Unp et Un+1 < Un
Ceci implique :
Vn e N Un+1 — Un+1 < Up — Up
donc la suite (v, — u,) est décroissante. Par hypothese cette suite converge vers 0, donc
0 est sa borne inférieure, et ainsi :

Vn e N Uy — Uy = 0 donc Uy < Up

2. Montrons que (u,) et (v,) sont convergentes :
La suite (u,) est croissante, donc minorée par ug. La suite (v,) est décroissante, donc
majorée par vy. Le point précédent donne :

Vn € N Ug < Up < Vp < Vg

La suite (u,) est croissante et majorée par vy, donc par théoréme elle converge.

La suite (v,,) est décroissante et minorée par ug, donc par théoreme elle converge.

3. Montrons que leurs limites sont égales :

Soit ¢ = limu,,, ¢’ = limv,. Comme lim(v, — u,) = 0 alors ¢’ — ¢ = 0, puis £ = (.

Ainsi (uy,) est (v,) convergent vers la méme limite. O

Exercice 15.
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IV. Suites extraites
A. Généralités

_| Définition

Soit ¢ : N — IN une application strictement croissante, et (u,) une suite. La suite

(Upm)) = (Up(0), Up(1)s Up(2) - - -)

est dite eztraite de la suite (uy,).

Exemples. Les suites suivantes sont extraites de la suite (u,,) :

(U2n) = (Uo, Uz, Ug, - - )
(’LLgn_H) = (Ul,U3,u5,...)
(un3) = (Uo,ul,U8,U27,...>

Théoréme

Si une suite (u,,) admet une limite alors toutes ses suites extraites admettent la méme
limite.

Démonstration. Soit (ue(,)) une suite extraite d'une suite (u,) admettant ¢ pour limite.
On suppose que £ est un réel, les cas ou £ est infini sont similaires.

Soit € > 0. Alors il existe N € N tel que pour tout n € IN :
n>=N = lup, — ) < e
Sin > N alors p(n) > N (car ¢(n) > n, voir lemme ci-dessous). Ceci montre que :
Ve>0 INeN VneN n>2N = |uym (| <e

La suite (uy(,)) converge bien vers /. O

Lemme
Soit ¢ : N — IN strictement croissante. Alors ¢(n) > n pour tout n € IN.

Démonstration. Par récurrence, sachant que si p et ¢ sont deux entiers alors :

pP>q — pzqg+l O
Exercice 16.

Remarque : décalage. Soit (u,) une suite admettant une limite. Pour tout p € IN la
suite

(Untp)nen = (Up, Upt1, Upt2, - - )
admet la méme limite.

On peut aussi décaler dans l'autre sens, mais alors la suite n’est définie que pour n > p :

(un—p)n2p = (uO; Uy, .. ) = (Un)n>0

Dans ce cas également la suite admet la méme limite, mais ce n’est pas conséquence du
théoreme précédent.
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Proposition ]

Soit (u,)nen une suite. Si les suites extraites (o, )nenw €t (Ugni1)nen tendent vers la
méme limite (finie ou infinie) alors la suite (u,),en tend aussi vers cette limite.

Démonstration. On traite le cas ou les suites (ug,) et (ug,y1) convergent. Les cas ou la
limite est infinie sont similaires.

Supposons que les suites (ug,) et (ug,,1) convergent vers une limite commune /.
Démontrons que la suite (u,,) converge également vers /.

Soit € un réel strictement positif. Comme les suites (ug,) et (ug,+1) convergent vers ¢ alors
il existe deux entiers Ny et Nj tels que :

Vn e N n>N, — |U2n €|<€
et n>N — |’LL2n+1—€| <e€
De fagon équivalente :
Vk e IN 2k > 2N, = Jug — | e (1)
et 2k+1>22N+1 — |u2k+1—€| <e€ (2)

On pose N = Max {2Ny, 2N, + 1}.
Soit n un entier supérieur a N. Alors n est supérieur a 2N, et a 2Ny + 1.
De plus n est pair ou impair.

Si n est pair alors il existe £k € IN tel que n = 2k. On a supposé que n > 2Ny, donc
2k > 2Ny, puis (1) donne |ug, — £| < € et donc |u, — ¢| < e.

Si n est impair alors il existe £ € IN tel que n = 2k + 1. On a supposé que n > 2N; + 1,
donc 2k +1 > 2N; + 1, puis (2) donne |uge1 — ¢| < € et donc |u, — ] < e.

Finalement, que n soit impair ou pair on a obtenu |u, — ¢| < . On a donc démontré :
Ve >0 N e N n>N — |u,—/(<¢

Ceci prouve que la suite (u,) converge vers /. U
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B. Théoréme de Bolzano-Weierstrass

oute suite bornée admet une suite extraite convergente.

ﬁ Théoréme de Bolzano-Weierstrass ]
T

Démonstration dans le cas réel. Soit (u,),en une suite réelle bornée, m et M un minorant
et un majorant de (u,), si bien que :

Vn € N m<u, <M

On démontre le théoreme en trois étapes.
1. Construction d’une suite de segments emboités.

On applique le procédé de dichotomie pour construire par récurrence deux suites (a,,) et
(b,) telles que pour tout n € IN le segment [a,, b,] contienne une infinité de termes de la
suite u.

Initialisation. On pose ag = m, by = M. Comme la suite (u,) est incluse dans le segment
[m, M| alors le segment [ag, bg] contient une infinité de termes w,, puisqu’il les contient
tous.

De plus by — ag = M — m, donc le segment [ag, bo] est de longueur M — m.

Hérédité. Supposons définis deux réels a,, et b, tels que le segment |a,,, b,] contienne une
infinité de termes de la suite w.

Soit ¢,, = . Alors I'un des segments [a,,, ¢,,| et [¢,, b,] contient une infinité de termes
ug. De plus :  a, < ¢, < b,.

an+bp
2

Si [an, ¢,] est dans ce cas alors on définit a,, 1 = a, et b, 11 = ¢,. Sinon on définit a, 1 = ¢,
et by = b,. Alors le segment [a,1,b,11] contient une infinité de termes wy,.

Dans les deux cas :  a, < apy1 < b1 < by et bpi1 — Qi1 = b"_T“"
En effet :
(079 + bn bn — Qp
bn—i—l_an—l-lzcn_an: — 0p = 9
ap + bn bn — Qp
ou bn+1 — Op41 = bn —Cp = bn - 9 - 9

Conclusion. On a construit par récurrence deux suites (a,) et (b,) telles que pour tout
n € N le segment [ay, b,] contienne une infinité de termes de la suite .

De plus on a démontré que :

bn — An

2

Vn € N (p < Qpg b1 < by et bpi1 — Qpg1 =
Les deux premieéres inégalités montrent que la suite (a,) est croissante et la suite (b,) est

décroissante. La troisieme égalité montre que la suite (b, — a,,) est géométrique de raison
%. Son premier terme est by — ag = M — m, donc :

Vn € N b, —a, = ———
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Ainsi la suite (b, — a,,) converge vers 0.

Finalement (a,) est croissante, (b,) est décroissante, leur différence converge vers 0 donc
ces deux suites sont adjacentes.

Par théoreme elles convergent vers une limite /.
2. Construction d’une suite extraite.
On construit par récurrence une suite extraite (uy(,)) encadrée par les suites (a,) et (by,).

Initialisation. On pose p(0) = 0, si bien que uyQ) = ug. Alors uy@y € [m, M| car le
segment [m, M| contient toute la suite (u,). Ainsi ag < uyp() < bo.

Hérédité. Supposons défini uy () avec a, < Upm) < bp.

Le segment [a,1,bn11] contient une infinité de termes uy. Il contient donc un wy, pour k
strictement supérieur a ¢(n), puisque p(n) est fini. On pose p(n + 1) = k, si bien que
e(n+1) > @(n), et anp1 < Upni1) < bpyi-

Conclusion. On a construit par récurrence une suite (u,(n)) comprise entre les suites (ay,)
et (b,). Cette suite est bien extraite de la suite (u,) car la fonction ¢ est strictement
croissante :  VYn e IN  ¢(n+1) > ¢p(n)

3. La suite extraite est convergente.

On sait que : Vn € N ap < Upn) < by

De plus les suites (a,) et (b,) convergent vers le méme réel /.

Par théoreme d’encadrement la suite extraite (uy(,)) converge vers .

On a démontré que la suite (u,) admet une suite extraite convergente. 0

Démonstration dans le cas complexe. Soit (u,) une suite complexe bornée.

On sait que pour tout complexe z : |Rez| <|z| et |[Imz| <]z
Ceci montre que les suites réelles (Re(u,)) et (Im(u,,)) sont bornées.

D’apres le théoreme de Bolzano-Weierstrass dans le cas réel il existe une suite extraite
(Re(uyp(ny)) convergente.

La suite (Im(uy(@m)) est extraite de la suite (Im(u,)) donc elle est bornée, et d’apres le
théoreme de Bolzano-Weierstrass dans le cas réel il existe une suite extraite (Im(upop(n)))
convergente.

La suite (Re(tpop(n))) est extraite de la suite (Re(uy(,)) qui est convergente donc elle est
convergente.

Les deux suites (Re(Upopn))) €t (Im(ugpoy(n))) sont convergentes donc la suite extraite
(Ugoyp(n)) €st convergente. O
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C. Valeurs d’adhérence

Définition

Soit (uy,)nen une suite. Un réel a est valeur d’adhérence de la suite (u,) si :

Remarque. De fagon équivalente, le réel a est valeur d’adhérence de la suite (u,,) si pour
tout € > 0 l'intervalle [a — €, a + €] contient une infinité de termes de la suite.

Proposition ]

Soit (u,)new une suite et a un réel. Alors a est valeur d’adhérence de la suite (uy,) si
et seulement s'il existe une suite extraite de (u,) convergeant vers a.

Démonstration. Soit a une valeur d’adhérence de la suite (uy,).

On construit par récurrence une suite (Ug(n))nen coOnvergeant vers a.
Initialisation. On pose ¢(0) = 0.

Hérédité. Supposons, pour un k € IN, que ¢(k) est défini. Soit N = p(k) + 1. Comme a
est valeur d’adhérence alors il existe n > N tel que |u,, — a| < T}rl On pose p(k+1) = n.
Alors p(k+1) > p(k) et |u¢(k+1) — a} < k%rl

Conclusion. On a construit une suite extraite (u,x)) car la fonction ¢ est strictement
croissante. D’apres le théoreme d’encadrement cette suite converge vers a.

Réciproquement, supposons qu’il existe une suite extraite (u,(n)) convergeant vers a. Soit
e€>0et N € N. Alors il existe M € N tel que :

Vn € N n>M — }%(n)—a\gs

Ainsi par exemple pour n = Max {N, M} on a ‘u@(n) — a| <e.
Ceci montre que a est valeur d’adhérence de la suite (uy,), et acheéve la démonstration. [

Remarques.

e Le théoreme de Bolzano-Weierstrass peut donc s’énoncer : toute suite bornée admet
une valeur d’adhérence.

e Soit (un)nen une suite. Les valeurs d’adhérence de (u,) sont les limites des suites
extraites convergentes de (u,).

Exemple. La suite ((—1)"),en admet deux valeurs d’adhérences : 1 et —1.
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