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Corrigé du Devoir à la Maison no6

Exercice 1.
1. La vitesse de croissance du rayon de l’univers est constante égale à V . Cette vitesse est

la dérivée de X, donc : ∀t ∈ R+ X ′(t) = V

Comme t est élément de R+ qui est un intervalle, par intégration on en déduit que
X(t) = V t + C où C est une constante. D’après l’énoncé X(0) = X0 = V t0, donc :

∀t ∈ R+ X(t) = V (t + t0)

2. À un instant t la vitesse du traîneau du père Noël est la somme de sa vitesse propre,
égale à v, et de celle donnée par l’écartement de l’univers, que l’on note w(t).
La vitesse du père Noël est la dérivée de x puisque x est sa position, donc :

x′(t) = v + w(t)

Si x(t) = 0 alors w(t) = 0 et si x(t) = X(t) alors w(t) = V , et comme l’univers grandit
de manière homogène alors la vitesse w(t) est proportionnelle à la position x(t). On en
déduit :

w(t) = x(t)
X(t)V

Ceci donne :

x′(t) = v + x(t)
X(t)V

3. D’après les deux questions précédentes la fonction x est solution de l’équation différen-
tielle suivante :

y′ − 1
t + t0

y = v (1)

L’équation homogène associée à cette équation est :

y′ − a(t)y = 0 (2)

où a est la fonction définie par :

a : R+ −→ R

t 7−→ 1
t+t0

Soit A la fonction définie par :

A : R+ −→ R

t 7−→ ln (t + t0)
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Alors A est une primitive de a. De plus l’ensemble R+ est un intervalle, donc par
théorème les solutions de l’équation homogène (2) sont les fonctions y0 définies par :

y0 : R+ −→ R

t 7−→ λeA(t) = λ(t + t0)

où λ est une constante réelle.
On cherche maintenant une solution particulière de l’équation (1). On utilise pour cela
la méthode de variation de la constante. Soit λ une fonction dérivable de R+ dans R,
et soit y1 la fonction définie par :

∀t ∈ R+ y1(t) = λ(t).(t + t0)

Alors y1 est dérivable et :

∀t ∈ R+ y′
1(t) = λ′(t).(t + t0) + λ(t)

Ainsi y1 est solution de l’équation (1) si et seulement si :

λ′(t).(t + t0) + λ(t) − 1
t + t0

λ(t).(t + t0) = v

Cette condition équivaut à :
λ′(t) = v

t + t0

On pose λ(t) = v ln (t + t0) pour tout t ∈ R+. La fonction λ est dérivable et vérifie
λ′(t) = v

t+t0
. La fonction y1 s’écrit maintenant :

∀t ∈ R+ y1(t) = v(t + t0) ln (t + t0)

Par propriété les solutions de l’équation (1) sont les fonctions y = y0 + y1, i.e., les
fonctions définies par

∀t ∈ R+ y(t) = (t + t0) [λ + v ln (t + t0)]

où λ est une constante.
4. D’après la question précédente il existe un réel λ tel que :

∀t ∈ R+ x(t) = (t + t0) [λ + v ln (t + t0)]

À l’instant t = 0 le père Noël est au centre de l’univers. Ceci donne la condition initiale
x(0) = 0, de laquelle on déduit :

λ = −v ln t0

On calcule ensuite :

∀t ∈ R+ x(t) = (t + t0) [v ln (t + t0) − v ln t0] = v(t + t0) ln
(

1 + t

t0

)
La distance du père Noël au centre de l’univers à l’instant t est donc donnée par la
formule :

∀t ∈ R+ x(t) = v(t + t0) ln
(

1 + t

t0

)
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5. Le père Noël réussira à sortir de l’univers si et seulement s’il existe un instant t tel que :

x(t) ⩾ X(t)

Ceci équivaut à la condition :
ln
(

1 + t

t0

)
⩾

V

v

Or la limite de ln
(
1 + t

t0

)
lorsque t tend vers l’infini est +∞, donc cette quantité

dépasse la quantité V
v

pour un t assez grand.
Plus précisément, l’instant t1 où le père Noël sort de l’univers est l’instant t1 tel que :

x(t1) = X(t1)

Ceci équivaut à l’égalité 1 + t1
t0

= e
V
v et donc :

t1 = t0
(
e

V
v − 1

)

Exercice 2.
1. Pour tout n ∈ N on note Pn la propriété :

∃(an, bn) ∈ Z2 (1 + i2
√

2)n = an + ibn

√
2 et an − bn ̸≡ 0 [3]

On démontre par récurrence que cette propriété est vraie pour tout n ∈ N.
Initialisation. Posons a0 = 1 et b0 = 0.
Alors (1 + i2

√
2)0 = 1 = a0 + i

√
2b0 et a0 − b0 = 1 ̸≡ 0 [3].

La propriété P0 est donc valide.
Hérédité. Supposons que pour un certain n ∈ N la propriété Pn est vraie. Alors il existe
deux entiers an et bn tels que :

(1 + i2
√

2)n = an + ibn

√
2 et an − bn ̸≡ 0 [3]

On calcule alors (1 + i2
√

2)n+1 :

(1 + i2
√

2)n+1 = (1 + i2
√

2)n(1 + i2
√

2) = (an + i
√

2bn)(1 + i2
√

2)
= (an − 4bn) + i

√
2(2an + bn)

Posons an+1 = an − 4bn et bn+1 = 2an + bn. Comme an et bn sont entiers alors an+1 et
bn+1 sont entiers.
De plus an+1 − bn+1 = −an − 5bn, et comme −5 ≡ 1 [3] alors :

an+1 − bn+1 = −an − 5bn ≡ −an + bn ≡ −(an − bn) [3]

Par hypothèse de récurrence an − bn ̸≡ 0 [3], donc an+1 − bn+1 ̸≡ 0 [3].
On a démontré que la propriété Pn+1 est vraie si la propriété Pn est vraie.
Conclusion. Par récurrence la propriété Pn est vraie pour tout n ∈ N.
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2. Comme α = arccos 1
3 alors cos α = 1

3 , et :

sin α = sin arccos 1
3 =

√
1 −

(
1
3

)2
= 2

√
2

3

On en déduit :
eiα = cos α + i sin α = 1

3 + i2
√

2
3

3. On raisonne par l’absurde en supposant que α
π

est rationnel, donc qu’il existe deux
entiers p et q, avec q strictement positif, tels que α

π
= p

q
.

Alors : (
eiα
)q

= eiπp =
(
eiπ
)p

= (−1)p

D’autre part d’après la question précédente :

(
eiα
)q

=
(

1
3 + i2

√
2

3

)q
= (1 + i2

√
2)q

3q

D’après la première question de cet exercice il existe deux entiers aq et bq tels que
(1 + i2

√
2)q = aq + i

√
2bq, et ainsi :

aq + i
√

2bq = (−1)p3q

Par identification des parties réelles et imaginaires aq = (−1)p3q et bq = 0.
Alors aq − bq = (−1)p3q. Comme q ⩾ 1 alors aq − bq est multiple de 3 et donc aq − bq

est multiple de 3, ce qui contredit la propriété de la première question, selon laquelle
aq − bq n’est pas congru à 0 modulo 3.
Cette contradiction montre que α

π
est irrationnel : α

π
̸∈ Q.

Exercice 3.
1. On calcule :

M2 =
(

a2 + bc b(a + d)
c(a + d) d2 + bc

)
=
(

a2 + ad b(a + d)
c(a + d) d2 + ad

)
+
(

bc − ad 0
0 bc − ad

)

= (a + d)
(

a b
c d

)
+ (bc − ad)

(
1 0
0 1

)
= (a + d)M − (ad − bc)I2.

Ainsi M = αM + βI2 avec α = a + d et β = −(ad − bc) = − det M .
2. (a) Comme le discriminant de l’équation (C) est non-nul alors λ1 et λ2 sont distincts

et λ1 − λ2 est non-nul. On pose :

M1 = 1
λ1 − λ2

(M − λ2I2) et M2 = 1
λ1 − λ2

(λ1I2 − M)

On vérifie que les égalités demandées sont bien respectées :

M1 + M2 = 1
λ1 − λ2

(λ1I2 − λ2I2) = I2

λ1M1 + λ2M2 = 1
λ1 − λ2

(λ1M − λ2M) = M.
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(b) Méthode 1. Pour tout n ∈ N on note Pn la propriété : Mn = λn
1 M1 + λn

2 M2.
On démontre par récurrence que cette propriété est vraie pour tout n ∈ N.
Initialisation. D’après la question précédente la propriété P0 est valide (et la pro-
priété P1 aussi).
Hérédité. Supposons que la propriété Pn est vraie, pour un certain n ∈ N.
En multipliant à droite par M elle donne :

Mn+1 = λn
1 M1M + λn

2 M2M.

Par définition de M1 :

M1M = 1
λ1 − λ2

(M − λ2I2)M = 1
λ1 − λ2

(M2 − λ2M)

On sait que M2 = αM + βI2. De plus λ1 et λ2 sont les solutions de l’équation (C),
donc λ1 + λ2 = α et λ1λ2 = −β. Ceci donne :

M1M = 1
λ1 − λ2

(αM + βI2 − λ2M) = 1
λ1 − λ2

(λ1M − λ1λ2I2)

= 1
λ1 − λ2

λ1(M − λ2I2) = λ1M1

De même on montre que M2M = λ2M2. On obtient donc :

Mn+1 = λn+1
1 M1 + λn+1

2 M2

Ceci montre que la propriété Pn+1 est vraie, et l’hérédité est démontrée.
Conclusion. Par récurrence la propriété Pn est vraie pour tout n ∈ N.

Méthode 2. On sait que M = λ1M1 + λ2M2. Par définition de M1 et M2 :

λ1M1 × λ2M2 = λ1λ2M1M2 = λ1λ2

λ1 − λ2
(M − λ2I2)(λ1I2 − M)

= − λ1λ2

λ1 − λ2
(M2 − (λ1 + λ2)M + λ1λ2I2)

On sait que M2 = αM + βI2. De plus λ1 et λ2 sont les solutions de l’équation (C),
donc λ1 + λ2 = α et λ1λ2 = −β. Ceci donne :

λ1M1 × λ2M2 = − λ1λ2

λ1 − λ2
(M2 − αM − βI2) = 02.

On démontre de même que λ2M2 × λ1M1 = 02, donc les matrices λ1M1 et λ2M2
commutent, et on peut appliquer la formule du binôme. Elle donne :

∀n ∈ N Mn = (λ1M1 + λ2M2)n =
n∑

k=0

(
n

k

)
(λ1M1)k(λ2M2)n−k

Si k > 0 et k < n alors (λ1M1)k(λ2M2)n−k = 02, car λ1M2 × λ2M2 = 02.
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Il ne reste dans la somme que les termes pour k = 0 et k = n, donc :

∀n ∈ N Mn = (λ1M1)n + (λ2M2)n.

Ceci donne :
∀n ∈ N Mn = λn

1 Mn
1 + λn

2 Mn
2 .

En utilisant la définition de M1 :

M2
1 = 1

(λ1 − λ2)2 (M − λ2I2)2

= 1
(λ1 − λ2)2 (M2 − 2λ2M + λ2

2I2)

= 1
(λ1 − λ2)2 ((λ1 + λ2)M − λ1λ2I2 − 2λ2M + λ2

2I2)

= 1
(λ1 − λ2)2 ((λ1 − λ2)M − λ2(λ1 − λ2)I2) = 1

(λ1 − λ2)
(M − λ2I2) = M1

Par récurrence immédiate on en déduit : ∀n ∈ N Mn
1 = M1.

De même on démontre : ∀n ∈ N Mn
2 = M2.

Et ainsi finalement :

∀n ∈ N Mn = λn
1 M1 + λn

2 M2.

3. Comme le discriminant de (C) est nul et λ0 est la solution de cette équation alors
α = 2λ0 et β = −λ2

0.
La matrice M vérifie donc M2 = 2λ0M − λ2

0I2.
On pose M0 = M − λ0I2.
Alors M2

0 = M2 − 2λ0M + λ2
0I2 = 02.

On démontre que pour tout n ∈ N∗ : Mn = λn
0 I2 + λn−1

0 nM0.
Méthode 1. On note Pn cette propriété et on la démontre par récurrence.
Initialisation. Par définition de M0 la propriété P1 est vraie : M = λ0I2 + M0.
Hérédité. Supposons que la propriété est vraie pour un certain n ∈ N∗. En la multipliant
à droite par M on obtient :

Mn+1 = λn
0 M + λn−1

0 nM0M.

Or M = λ0I2 + M0 et M2
0 = 02 donc :

M0M = M0(λ0I2 + M0) = λ0M0.

Ceci donne :

Mn+1 = λn
0 M + λn−1

0 n(λ0M0) = λn
0 (λ0I2 + M0) + λn

0 nM0 = λn+1
0 I2 + λn

0 (n + 1)M0.

La propriété Pn+1 est vraie, et l’hérédité est démontrée.
Conclusion. Par récurrence sur n la propriété Pn est vraie pour tout n ∈ N∗.
On peut ajouter qu’elle est vraie aussi si n = 0 dans le cas où λ0 est non-nul.
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Méthode 2. Par définition de M0 : M = λ0I2 + M0.
Les matrices λ0I2 et M commutent, donc la formule du binôme donne :

∀n ∈ N Mn = (λ0I2 + M0)n =
n∑

k=0

(
n

k

)
(λ0I2)n−kMk

0

On sait que M2
0 = 02, donc pour tout k ⩾ 2 : Mk

0 = 02.
Il ne reste que les termes pour k = 0 et k = 1 dans la somme :

∀n ∈ N Mn = (λ0I2)n + n(λ0I2)n−1M0 = λnI2 + λn−1
0 nM0

La formule est démontrée.
4. Soit M =

(
3 1
2 4

)
. D’après la question (1) : M2 = 7M − 10I2.

L’équation (C) est donc : λ2 − 7λ + 10 = 0.
Son discriminant est non-nul, ses solutions sont λ1 = 5 et λ2 = 2.
Comme dans la question (2) on pose :

M1 = 1
λ1 − λ2

(M − λ2I2) = 1
3

(
1 1
2 2

)

M2 = 1
λ1 − λ2

(λ1I2 − M) = 1
3

(
2 −1

−2 1

)
D’après le résultat de la question (2) :

∀n ∈ N Mn = λn
1 M1 + λn

2 M2 = 1
3

(
5n

(
1 1
2 2

)
+ 2n

(
2 −1

−2 1

))
Donc :

∀n ∈ N Mn = 1
3

(
5n + 2 × 2n 5n − 2n

2 × 5n − 2 × 2n 2 × 5n + 2n

)
.

Soit M =
(

3 1
−1 5

)
. D’après la question (1) : M2 = 8M − 16I2.

L’équation (C) est donc : λ2 − 8λ + 16 = 0.
Son discriminant est nul, son unique solution est λ0 = 4.
Comme dans la question (3) on pose :

M0 = M − λ0I2 =
(

−1 1
−1 1

)
.

D’après le résultat de la question (3) :

∀n ∈ N∗ Mn = λn
0 I2 + λn−1

0 nM0 = 4n

(
1 0
0 1

)
+ 4n−1n

(
−1 1
−1 1

)
On vérifie que cette formule est vraie aussi pour n = 0, donc :

∀n ∈ N Mn = 4n−1
(

4 − n n
−n 4 + n

)
.
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