
Lycée Bellevue – Toulouse 16 janvier 2026
MPSI – Mathématiques

Corrigé du Devoir Surveillé no4

Exercice 1. (8 points)
1. (a) (1 point) On calcule :

M2 =

Ö
2 m m2

1
m

2 m
1

m2
1
m

2

è
= 2I3 + M.

(b) (1 point) La relation de la question précedente s’écrit 1
2(M2 − M) = I3, donc :

M
(1

2M − I3
)

=
(1

2M − I3
)
M = I3

Ceci montre que M est inversible, d’inverse M−1 = 1
2(M − I3).

2. (a) (1 point) On obtient :

M + I3 =

Ö
1 m m2

1
m

1 m
1

m2
1
m

1

è
=

Ö
1
1
m

1
m2

è (
1 m m2 )

L’égalité M + I3 = UV a lieu avec U =

Ö
1
1
m

1
m2

è
et V =

(
1 m m2 ).

(b) (2 points) On calcule V U = (3), donc par associativité, pour tout entier k ⩾ 1 :

(M + I3)k = (UV )k = U(V U)k−1V = U
(
3k−1)V = 3k−1UV = 3k−1(M + I3).

Cette formule n’est pas valable pour k = 0 car (M + I3)0 = I3, elle donnerrait
I3 = 1

3(M + I3), ce qui est faux.
3. (a) (1 point) On utilise la formule du binôme :

n∑
k=1

Ç
n

k

å
akbn−k =

n∑
k=0

Ç
n

k

å
akbn−k − bn = (a + b)n − bn.

(b) (2 points) Les matrices M + I3 et I3 commutent donc d’après la formule du binôme
pour les matrices :

∀n ∈ N Mn = (M + I3 − I3)n =
n∑

k=0

Ç
n

k

å
(M + I3)k(−I3)n−k

On calcule alors :

Mn =
n∑

k=0

Ç
n

k

å
(−1)n−k(M + I3)k = (−1)nI3 +

n∑
k=1

Ç
n

k

å
(−1)n−k(M + I3)k
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La formule de la question (2b) donne :

Mn = (−1)nI3 +
n∑

k=1

Ç
n

k

å
(−1)n−k3k−1(M + I3)

= (−1)nI3 + 1
3

Ç
n∑

k=1

Ç
n

k

å
(−1)n−k3k

å
(M + I3)

La formule de la question (3a) donne :

Mn = (−1)nI3 + 1
3(2n − (−1)n)(M + I3)

Finalement :

∀n ∈ N Mn = 2n + 2(−1)n

3 I3 + 2n − (−1)n

3 M

Exercice 2. (9 points)
1. (a) (2 points) Comme f est solution de l’équation (E) alors f ′′f = f ′2 + 1, donc :

∀t ∈ R f ′′(t)f(t) = f ′(t)2 + 1

Comme f ′(t) est réel alors f ′(t)2 + 1 est strictement positif. Ainsi f ′′(t)f(t) est
strictement positif, et donc f(t) ne peut être nul.
Ceci étant valable pour tout t ∈ R, la fonction f ne s’annule par sur R.
Comme f(t) n’est nul pour aucun t alors par division :

∀t ∈ R f ′′(t) = f ′(t)2 + 1
f(t)

Comme la fonction f est deux fois dérivable alors f et f ′ sont dérivables, donc par
produit, somme et quotient f ′′ est dérivable.

(b) (2 points) Comme f ne s’annule pas alors la fonction f ′′

f
est bien définie.

Comme f ′′ et f sont dérivables alors par quotient la fonction f ′′

f
est dérivable.

Sa dérivée est :
Å

f ′′

f

ã′

= f ′′′f − f ′′f ′

f 2

Comme la fonction f vérifie l’équation (E) alors f ′′f = f ′2 + 1, ce qui donne par
dérivation f ′′′f + f ′′f ′ = 2f ′′f ′ puis f ′′′f − f ′′f ′ = 0.
Ceci montre que

Ä
f ′′

f

ä′
est nulle.

Comme R est un intervalle ceci implique que la fonction f ′′

f
est constante.

(c) (1 point) Soit c la valeur de f ′′

f
. Alors : ∀t ∈ R f ′′(t) = cf(t).

Comme f vérifie l’équation (E) alors : ∀t ∈ R cf(t)2 = f ′(t)2 + 1.
Comme f ′(t)2 + 1 et f(t)2 sont strictement positifs alors c est strictement positif.
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(d) (1 point) Nous venons de voir que f ′′ = cf , ce qui signifie que f est solution de
l’équation différentielle y′′ − cy = 0.
L’équation caractéristique associée à cette équation différentielle linéaire du second
ordre est λ2 − c = 0. Ses solutions sont ±

√
c car c est positif, elles sont distinctes

car c n’est pas nul, donc par propriété les solutions de l’équation y′′ − cy = 0 sont
les fonctions :

y : t 7→ αe
√

c t + βe−
√

c t avec (α, β) ∈ R2.

2. (2 points) D’après ce qui précède, si f est solution de l’équation (E) alors il existe deux
réels α et β tels que :

∀t ∈ R f(t) = αe
√

c t + βe−
√

c t

Par dérivation ceci donne, pour tout t ∈ R :

f ′(t) = α
√

ce
√

c t − β
√

ce−
√

c t et f ′′(t) = αce
√

c t + βce−
√

c t

Si f vérifie les conditions initiales f(0) = a et f ′(0) = 0 alors α + β = a et α − β = 0,
donc α = β = a

2 :

∀t ∈ R f(t) = a

2
Ä
e

√
c t + e−

√
c t
ä

= a ch(
√

c t).

Passons à la synthèse.
Soit c ∈ R∗

+ et f la fonction t 7→ a ch(
√

c t).
Alors f est deux fois dérivable, ses deux premières dérivées vérifient :

∀t ∈ R f ′(t) = a
√

c sh(
√

c t) et f ′′(t) = ac ch(
√

c t).

Elle vérifie l’équation (E) si et seulement si f ′′f = f ′2 + 1, soit :

∀t ∈ R ca2 ch2(
√

c t) = a2c sh2(
√

c t) + 1

Ceci équivaut à a2c = 1, donc c = 1
a2 , puis

√
c = 1

a
.

L’équation (E) munie de ses conditions initiales admet donc une et une seule solution,
la fonction f définie par :

∀t ∈ R f(t) = a ch
(

t
a

)
.

f(t) = K

2 e
t

K + K

2 e− t
K = K ch

(
t

K

)
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Exercice 3. (9 points)
1. (2 points) On suppose que (p − 1)! ≡ −1 [p].

Cette congruence signifie que p divise (p − 1)! + 1.
Soit d un diviseur de p différent de p. Alors 1 ⩽ d ⩽ p − 1, donc d divise (p − 1)!.
Comme d divise p et p divise (p − 1)! + 1 alors par transitivité d divise (p − 1)! + 1.
Ainsi d divise (p − 1)! et (p − 1)! + 1, donc il divise 1.
Finalement d = 1, et donc les seuls diviseurs de p sont p et 1, ce qui montre que p est
premier.

2. (a) (1 point) Par définition a est inversible modulo n si et seulement si il existe b ∈ Z
tel que ab ≡ 1 [n], donc si et seulement si il existe deux entiers b et k tels que
ab = 1 + kn.
Cette égalité s’écrit au + nv = 1 avec u = b et v = −k, donc a est inversible si et
seulement si il existe deux entiers u et v tels que au + nv = 1, ce qui d’après le
théorème de Bézout équivaut au fait que a et n sont premiers entre eux.
Finalement a est inversible modulo n si et seulement s’il est premier avec n.

(b) (1 point) Comme b est un inverse de a modulo n alors ab ≡ 1 [n].
Soit c un autre inverse de a. Alors ac ≡ 1 [n].
Par soustraction a(c − b) ≡ 0 [n], donc n divise a(c − b).
Comme n est premier avec a, car a est inversible modulo n, alors d’après le lemme
de Gauss n divise c − b. Ceci montre qu’il existe un entier k tel que c − b = kn, et
donc c = b + kn.
Réciproquement, si c = b + kn avec k entier alors ac = ab + akn ≡ 1 [n], donc c est
un inverse de a modulo n.
L’ensemble des inverses de a modulo n est donc l’ensemble des entiers c + kn où
k ∈ Z.

(c) (2 points) Soit k et c le quotient et le reste de la division euclidienne de b par n.
Cette division existe bien car n est supposé non-nul. Alors :

b = kn + c et 0 ⩽ c < n

D’après la question précédente, comme c = b − kn alors c est un inverse de b.
De plus c ne peut être nul, sinon b serait multiple de n, donc ab serait multiple de
n, ce qui est faux car ab ≡ 1 [n].
Ainsi 0 < c < n, donc il existe bien un inverse de a modulo n strictement compris
entre 0 et n.
Démontrons l’unicité de cet inverse. Soit c′ un autre inverse de a modulo n tel que
0 < c′ < n. D’après la question précédente il existe un entier ℓ tel que c′ = b + ℓn.
On a alors b = −ℓn + c′ avec 0 < c′ < n, ce qui implique 0 ⩽ c′ < n.
Ainsi c′ est le reste de la division euclidienne de b par n. Par unicité de la division
euclidienne cet entier est unique, donc a admet un unique inverse c modulo n tel
que 0 < c < n.
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3. (a) (1 point) Comme p est premier alors il est premier avec tout entier non multiple de
p, donc avec tout élément de J1, p − 1K.
D’après la question précédente, tout élément de J1, p − 1K est inversible modulo p,
et admet un et un seul inverse dans J1, p − 1K.

(b) (1 point) Par équivalence :

a = ã ⇐⇒ a2 ≡ 1 [p] ⇐⇒ p | a2 − 1 = (a − 1)(a + 1)

Comme p est premier alors d’après le lemme d’Euclide :

p | (a − 1)(a + 1) ⇐⇒ p | (a − 1) ou p | (a + 1)

⇐⇒ a ≡ 1 [p] ou a ≡ −1 [p]

Le seul entier a de J1, p − 1K tel que a ≡ −1 [p] est a = p − 1, donc les deux seuls
éléments a de J1, p − 1K tels que a = ã sont 1 et p − 1.

(c) (1 point) D’après ce qui précède, chaque entier a de l’ensemble J2, p − 2K admet un
et un seul inverse ã modulo p dans l’ensemble J2, p − 2K, et cet inverse est différent
de a.
Ainsi pour chaque facteur de ∏p−2

k=2 k, son inverse modulo p est aussi dans le produit.
On peut donc les regrouper deux par deux, et comme aã ≡ 1 [p] alors

p−2∏
k=2

k ≡ 1 [p] .

Ceci donne :

(p − 1)! = 1 ×
Ç

p−2∏
k=2

k

å
× (p − 1) ≡ 1 × 1 × (p − 1) ≡ −1 [p]

Le sens direct du théorème est démontré : si p est premier alors (p − 1)! ≡ −1 [p].
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Problème. L’inégalité de Poincaré (18 points)
Partie A. Résultats préliminaires (6 points)
1. (a) (2 points) Comme la fonction f est continue sur l’intervalle [a, b] alors la fonction

F est bien définie, et d’après le théorème fondamental de l’analyse elle est une
primitive de f .
En conséquence elle est dérivable de dérivée F ′ = f .
Par hypothèse cette dérivée est positive, donc F est croissante.

(b) (1 point) Par hypothèse F (b) = 0. Or F (a) = 0, et F est croissante. Ceci montre
que F est nulle sur [a, b]. En effet, par croissance de F :

∀x ∈ [a, b] a ⩽ x ⩽ b =⇒ F (a) ⩽ F (x) ⩽ F (b)
=⇒ 0 ⩽ F (x) ⩽ 0 =⇒ F (x) = 0.

La fonction F est nulle, donc sa drivée est nulle, et ainsi f = 0.
2. (a) (1 point) La fonction sinus ne s’annule pas sur R \ πZ donc la fonction cotangente

est bien définie sur cet ensemble.
De plus les fonctions cosinus et sinus sont de clases C1 sur cet ensemble donc par
quotient la fonction cotangente est de classe C1, et sa dérivée est :

∀x ∈ R \ πZ cot′ x = − sin2 x − cos2 x

sin2 x
On obtient deux expressions :

∀t ∈ R \ πZ cot′ x = − 1
sin2 x

= −1 − cot2 x.

(b) (2 points) Par développement limité, pour tout x ∈ R \ πZ :

cot x = cos x

sin x
=
(0)

1 − x2

2 + o(x2)
x − x3

6 + o(x3)
On calcule :

cot x =
(0)

1
x

Å
1 − x2

2 + o(x2)
ã 1

1 − x2

6 + o(x2)
=
(0)

1
x

Å
1 − x2

2 + o(x2)
ãÅ

1 + x2

6 + o(x2)
ã

=
(0)

1
x

Å
1 − x2

3 + o(x2)
ã

On aboutit donc au développement asymptotique :

cot x =
(0)

1
x

− x

3 + o(x).

Pour le développement asymptotique en π on peut poser h = x − π, mais on peut
aussi remarquer que la fonction contangente est π-périodique :

∀x ∈ R \ πZ cot(x + π) = cos(x + π)
sin(x + π) = − cos x

− sin x
= cot x.

On en déduit :

cot(x) = cos(x − π) =
(x→π)

1
x − π

− x − π

3 + o(x − π)

page 6/9



MPSI – Mathématiques Corrigé du Devoir Surveillé no4

Partie B. (12 points)
1. (a) (1 point) La fonction f est de classe C1 en 0 et en 1 donc d’après la formule de

Taylor Young elle admet en 0 et en 1 les développements limités suivant :

f(x) =
(0)

f(0) + f ′(0)x + o(x) et f(x) =
(1)

f(1) + f ′(1)(x − 1) + o(x − 1).

Comme f(0) = f(1) = 0 alors :

f(x) =
(0)

f ′(0)x + o(x) et f(x) =
(1)

f ′(1)(x − 1) + o(x − 1).

(b) (2 points) Les développements limités des deux questions précédentes montrent
que :

f(t) cot(πt) =
(0)

(f ′(0)t + o(t))
Å 1

πt
− πt

3 + o(t)
ã

=
(0)

f ′(0)
π

+ o(1)

Le développement limité de t 7→ cot(πt) en t = 1 est :

cot(πt) =
(1)

1
πt − π

− πtx − π

3 + o(πt − π) =
(1)

1
π

1
t − 1 − π

3 (t − 1) + o(t − 1)

On en déduit :

f(t) cot(πt) =
(1)

(f ′(1)(t − 1) + o(t − 1))
Å 1

π

1
t − 1 − π

3 (t − 1) + o(t − 1)
ã

=
(1)

f ′(1)
π

+ o(1)

La fonction g admet donc en 0 et en 1 les développements limités à l’ordre 0 sui-
vants :

g(t) =
(0)

f ′(0)
π

+ o(1) et g(t) =
(1)

f ′(1)
π

+ o(1)

Ceci montre qu’elle admet une limite finie en 0 et une limite finie en 1, donc elle
est prolongeable par continuite en 0 et en 1, en posant :

g(0) = f ′(0)
π

et g(1) = f ′(1)
π

(c) (1 point) La fonction f ′ est définie et continue sur [0, 1] car f est de classe C1, la
fonction g est continue sur [0, 1] d’après la question précédente, donc par somme et
produit les fonctions t 7→ f ′(t)g(t) et t 7→ (f ′(t) − πg(t))2 sont continues.
Ainsi les intégrales I et J sont bien définies.

page 7/9



MPSI – Mathématiques Corrigé du Devoir Surveillé no4

2. (2 points) Par définition de la fonction g :

∀t ∈ ]0, 1[ f ′(t)g(t) = f ′(t)f(t) cot(πt)

On définit :
∀t ∈ ]0, 1[ u(t) = f 2(t) et v(t) = cot(πt)

Ces fonctions sont de classe C1 sur ]0, 1[, de dérivée :

∀t ∈ ]0, 1[ u′(t) = 2f ′(t)f(t) et v′(t) = −π
(
1 + cot2(πt)

)
De plus les fonctions uv, u′v, et uv′ s’écrivent pour tout t ∈ ]0, 1[ :

∀t ∈ ]0, 1[ (uv)(t) = f 2(t) cot(πt) = f(t)g(t)
(u′v)(t) = 2f ′(t)f(t) cot(πt) = 2f ′(t)g(t)
(uv′)(t) = −π

(
f 2(t) + f 2(t) cot2(πt)

)
= −π

(
f 2(t) + g2(t)

)
Comme les fonctions f , f ′, g sont continues en 0 et en 1 alors les fonctions uv, u′v et
uv′ sont prolongeables par continuité en 0 et en 1.
On peut donc appliquer le théorème d’intégration par parties généralisé :

2I =
∫ 1

0
2f ′(t)g(t) dt =

∫ 1

0
u′(t)v(t) dt

=
[
u(t)v(t)

]1

0
−

∫ 1

0
u(t)v′(t) dt

=
[
f(t)g(t)

]1

0
+ π

∫ 1

0

(
f 2(t) + g2(t)

)
dt

Comme f(0) = f(1) = 0 alors on en déduit :

2I = π
∫ 1

0

(
f 2(t) + g2(t)

)
dt.

3. (a) (1 point) La fonction t 7→ (f ′(t) − πg(t))2 est positive sur [0, 1] donc par croissance
de l’intégrale J est positive.
Par linéarité de l’intégrale on obtient :

J =
∫ 1

0
(f ′(t) − πg(t))2 dt =

∫ 1

0
f ′2(t) dt − 2π

∫ 1

0
f ′(t)g(t) dt + π2

∫ 1

0
g2(t) dt

(b) (2 points) On reconnait la définition de I :

J =
∫ 1

0
f ′2(t) dt − 2πI + π2

∫ 1

0
g2(t) dt

L’égalité de la question (2) donne :

J =
∫ 1

0
f ′2(t) dt − π2

∫ 1

0

(
f 2(t) + g2(t)

)
dt + π2

∫ 1

0
g2(t) dt
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Par linéarité de l’intégrale :

J =
∫ 1

0
f ′2(t) dt − π2

∫ 1

0
f 2(t) dt

Comme J est positive on en déduit l’inégalité de Poincaré :∫ 1

0
f 2(t) dt ⩾

1
π2

∫ 1

0
f ′2(t) dt.

4. (a) (2 points) On pose, pour tout t ∈ ]0, 1[ : a(t) = π cot(πt)
Ainsi :

∀t ∈ ]0, 1[ a(t) = π cos(πt)
sin(πt) .

On remarque que pour tout t ∈ ]0, 1[ on a πt ∈ ]0, π[ donc sin(πt) > 0. On peut
donc définir la fonction A par :

∀t ∈ ]0, 1[ A(t) = ln(sin(πt)).

La fonction A est dérivable de dérivée a, donc c’est une primitive de a.
Comme ]0, 1[ est un intervalle alors par théorème les solutions de l’équation

y′ − a(t)y = 0

sont les fonctions t 7→ λeA(t) = λ sin(πt) où λ est une constante réelle, c’est-à-dire
les fonctions

f : ]0, 1[ −→ R

t 7−→ λ sin(πt)
avec λ ∈ R

(b) (1 point) Soit f une fonction vérifiant les hypothèses de l’inégalité de Poincaré, et
telle que celle-ci soit une inégalité.
D’après la question (3b) l’inégalité de Poincaré est une inégalité si et seulement si
J = 0.
Or la fonction t 7→ (f ′(t) − πg(t))2 est continue et positive sur [0, 1].
D’après le théorème de positivité, comme J = 0 alors :

∀t ∈ [0, 1] (f ′(t) − πg(t))2 = 0

Ceci donne f ′(t) − πg(t) = 0, donc :

∀t ∈ [0, 1] f ′(t) − π cot(πt)f(t) = 0

Ainsi la fonction f est solution de l’équation différentielle de la question précédente,
et donc f est de la forme t 7→ λ sin(πt).
Les fonctions pour lesquelles l’inégalité de Poincaré est une égalité sont donc les
fonctions :

f : ]0, 1[ −→ R

t 7−→ λ sin(πt)
avec λ ∈ R

page 9/9


