Lycée Bellevue — Toulouse 16 janvier 2026
MPSI — Mathématiques

[ Corrigé du Devoir Surveillé n°4 }

Exercice 1. (8 points)
1. (a) (1 point) On calcule :
2 m m?
M= L+ 2 m |=2L+M.
11 9
m2  m

(b) (1 point) La relation de la question précedente s’écrit 3(M? — M) = I3, donc :

Ceci montre que M est inversible, d’inverse M~ = (M — I3).
2. (a) (1 point) On obtient :

I m m? 1
M+ I; = - 1 m |= < (1 m m?)

11 1

m2 m m2
1

L’égalité M + I3 = UV a lieu avec U = = et V=_(1m m?).

1
m?2

(b) (2 points) On calcule VU = (3), donc par associativité, pour tout entier k& > 1 :
(M+ L) = OV =U0WVU)"'V=U@B""YYV =30V =3""(M + L).
Cette formule n’est pas valable pour k& = 0 car (M + I3)° = I3, elle donnerrait

I3 = (M + I3), ce qui est faux.
3. (a) (1 point) On utilise la formule du binéme :

) (”) ot = (") a0 = (a4 b)) — b

i \F o\ F

(b) (2 points) Les matrices M + I3 et I3 commutent donc d’apres la formule du binéme
pour les matrices :

n

VneN M”:(M+13—13)”:Z<

k=0

n

k) (M + L)k (=I3)" "

On calcule alors :

M" = zn: <Z) (=1)"F(M + I3)F = (=1)"I; + kZijl(Z) (—1)" (M + I3)"

k=0
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La formule de la question (2b) donne :

La formule de la question (3a) donne :
1
M* = (=1)"L+ 52" = (=1)")(M + L)

Finalement :

o 4 2(—1)"
3

o — (—1)

Vn e N M" = I3+ M

Exercice 2. (9 points)
1. (a) (2 points) Comme f est solution de 'équation (F) alors f”f = f? + 1, donc :

vteR  fU()f(t) = f ()" +1

Comme f'(t) est réel alors f'(t)* + 1 est strictement positif. Ainsi f”(¢)f(t) est
strictement positif, et donc f(¢) ne peut étre nul.

Ceci étant valable pour tout ¢t € R, la fonction f ne s’annule par sur R.

Comme f(t) n’est nul pour aucun ¢ alors par division :
J(0)° +1
f(@)

Comme la fonction f est deux fois dérivable alors f et f’ sont dérivables, donc par
produit, somme et quotient f” est dérivable.

VieR  f'(t) =

(b) (2 points) Comme f ne s’annule pas alors la fonction fT// est bien définie.

Comme f” et f sont dérivables alors par quotient la fonction f7" est dérivable.
f// )l f///f o f//f/
fr f?
Comme la fonction f vérifie 'équation (E) alors f”f = f + 1, ce qui donne par
dérivation f"f + f"f" =2f"f puis f"f — f"f =0.

. b /
Ceci montre que <7> est nulle.

Comme R est un intervalle ceci implique que la fonction fTN est constante.
(c) (1 point) Soit ¢ la valeur de fTN Alors : Vte R f"(t) =cf(t).
Comme f vérifie 'équation (E) alors : Vit € R cf(t)? = f/(¢)* + 1.

Comme f'(t)> + 1 et f(t)? sont strictement positifs alors ¢ est strictement positif.

Sa dérivée est : (
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(d) (1 point) Nous venons de voir que f” = ¢f, ce qui signifie que f est solution de
I’équation différentielle y”" — cy = 0.
L’équation caractéristique associée a cette équation différentielle linéaire du second
ordre est A2 — ¢ = 0. Ses solutions sont 4=+/c car c est positif, elles sont distinctes
car ¢ n’est pas nul, donc par propriété les solutions de I’équation y” — cy = 0 sont
les fonctions :

Yt eVl Be Vel avee (o, ) € R
2. (2 points) D’apres ce qui précede, si f est solution de 1’équation (E) alors il existe deux
réels a et [ tels que :
VieR  f(t) = aeYe! + Be Ve

Par dérivation ceci donne, pour tout t € R :
f'(t) = anfeeVet — Byfee™et et f7(t) = aceVet + Bee Vel

Si f vérifie les conditions initiales f(0) = a et f/(0) =0 alors o+ =aet a — =0,

donca=p3=3:

Vie R f(t) = %(eﬁt + e_\/gt) = ach(y/ct).

Passons a la synthese.
Soit ¢ € RY et f la fonction ¢ — ach(y/ct).

Alors f est deux fois dérivable, ses deux premieres dérivées vérifient :
VteR  f(t) = ayesh(yet) et f"(t) = acch(y/ct).
Elle vérifie 'équation (E) si et seulement si f”f = f* + 1, soit :
Vit c R ca®ch®(yet) = a’esh?(yVet) + 1

Ceci équivaut a a?c = 1, donc ¢ = ;—2, puis /¢ = i
L’équation (E) munie de ses conditions initiales admet donc une et une seule solution,
la fonction f définie par :
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Exercice 3. (9 points)
1. (2 points) On suppose que (p — 1) = —1 [p].
Cette congruence signifie que p divise (p — 1)! + 1.
Soit d un diviseur de p différent de p. Alors 1 < d < p — 1, donc d divise (p — 1)!.
Comme d divise p et p divise (p — 1)! 4+ 1 alors par transitivité d divise (p — 1)! + 1.
Ainsi d divise (p — 1)! et (p — 1)! + 1, donc il divise 1.
Finalement d = 1, et donc les seuls diviseurs de p sont p et 1, ce qui montre que p est
premier.

2. (a) (1 point) Par définition a est inversible modulo n si et seulement si il existe b € Z
tel que ab = 1 [n], donc si et seulement si il existe deux entiers b et k tels que
ab =1+ kn.

Cette égalité s’écrit au +nv = 1 avec u = b et v = —k, donc a est inversible si et
seulement si il existe deux entiers u et v tels que au +nv = 1, ce qui d’apres le
théoreme de Bézout équivaut au fait que a et n sont premiers entre eux.

Finalement a est inversible modulo n si et seulement s’il est premier avec n.
(b) (1 point) Comme b est un inverse de a modulo n alors ab =1 [n].
Soit ¢ un autre inverse de a. Alors ac = 1 [n].
Par soustraction a(c — b) = 0 [n], donc n divise a(c — b).
Comme n est premier avec a, car a est inversible modulo n, alors d’apres le lemme

de Gauss n divise ¢ — b. Ceci montre qu’il existe un entier k tel que ¢ — b = kn, et
donc ¢ = b + kn.

Réciproquement, si ¢ = b+ kn avec k entier alors ac = ab+ akn = 1 [n], donc c est
un inverse de ¢ modulo n.
L’ensemble des inverses de a modulo n est donc ’ensemble des entiers ¢ + kn ou
ke 7.

(c) (2 points) Soit k et ¢ le quotient et le reste de la division euclidienne de b par n.
Cette division existe bien car n est supposé non-nul. Alors :

b=kn+c et 0<e<n

D’apres la question précédente, comme ¢ = b — kn alors ¢ est un inverse de b.

De plus ¢ ne peut étre nul, sinon b serait multiple de n, donc ab serait multiple de
n, ce qui est faux car ab =1 [n].

Ainsi 0 < ¢ < n, donc il existe bien un inverse de a modulo n strictement compris
entre 0 et n.

Démontrons 'unicité de cet inverse. Soit ¢ un autre inverse de a modulo n tel que
0 < ¢ < n. D’apres la question précédente il existe un entier £ tel que ¢ = b+ In.
On a alors b = —¢n + ¢ avec 0 < ¢ < n, ce qui implique 0 < ¢ < n.

Ainsi ¢ est le reste de la division euclidienne de b par n. Par unicité de la division
euclidienne cet entier est unique, donc a admet un unique inverse ¢ modulo n tel
que 0 < ¢ < n.
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3. (a) (1 point) Comme p est premier alors il est premier avec tout entier non multiple de
p, donc avec tout élément de [1,p — 1].

D’apres la question précédente, tout élément de [1,p — 1] est inversible modulo p,
et admet un et un seul inverse dans [[1,p — 1].

(b) (1 point) Par équivalence :
a=a = a>=1 [p] = pla*>—1=(a—1)(a+1)
Comme p est premier alors d’aprées le lemme d’Euclide :
plla-a+1) <«  plla=1) ou p|(a+1)
= a=11[p] ou a=-1 [p|

Le seul entier a de [[1,p — 1] tel que a = —1 [p| est a = p — 1, donc les deux seuls
éléments a de [1,p — 1] tels que a = a sont 1 et p — 1.

(¢) (1 point) D’apres ce qui précede, chaque entier a de 'ensemble [2, p — 2] admet un
et un seul inverse @ modulo p dans I'ensemble 2, p — 2], et cet inverse est différent
de a.

Ainsi pour chaque facteur de H%;g k, son inverse modulo p est aussi dans le produit.
On peut donc les regrouper deux par deux, et comme aa =1 [p] alors

Ceci donne :

(p—l)!le(pljk:)x(p—l)zlxlx(p—l)z—l [p]

Le sens direct du théoreme est démontré : si p est premier alors (p — 1) = —1 [p].
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Probléme. L’inégalité de Poincaré (18 points)

Partie A. Résultats préliminaires (6 points)
1. (a) (2 points) Comme la fonction f est continue sur 'intervalle [a, b] alors la fonction
F' est bien définie, et d’apres le théoreme fondamental de 'analyse elle est une
primitive de f.
En conséquence elle est dérivable de dérivée F' = f.
Par hypothese cette dérivée est positive, donc F' est croissante.
(b) (1 point) Par hypothese F'(b) = 0. Or F(a) = 0, et F est croissante. Ceci montre
que F' est nulle sur [a, b]. En effet, par croissance de F :
Vz € [a,b] a<z<b = Fla)<F(x)<F(b)
= 0<F(x) <0 = F(x)=0.
La fonction F' est nulle, donc sa drivée est nulle, et ainsi f = 0.

2. (a) (1 point) La fonction sinus ne s’annule pas sur R \ 7Z donc la fonction cotangente
est bien définie sur cet ensemble.

De plus les fonctions cosinus et sinus sont de clases €' sur cet ensemble donc par
quotient la fonction cotangente est de classe 6", et sa dérivée est :

—sin?x — cos®x

Vo € R\ nZ cot' x = —
sin® x
On obtient deux expressions :

= —1— cot’z.

Vte R\ nZ cot' r = ——
sin?

(b) (2 points) Par développement limité, pour tout =z € R\ 77 :

COS T 1 -2 +o(a?)
cotx = = o 3
sinz () x — % + o(a?)
On calcule :
1< x? 2> 1 1( x? 2>< x? 2)
cotxr = —|1——+4ox = —|1——+4o(x 1+ —+o(x
0 x 2 (@) 1— % +0(z2) O 2 (=) 6 (=)
1< x? 2>
- (1=
o 3+0(9c)

On aboutit donc au développement asymptotique :
1 =z

tr = —— - .
cot x o 3+0(93)

Pour le développement asymptotique en 7 on peut poser h = x — m, mais on peut
aussi remarquer que la fonction contangente est m-périodique :

Ve e R\ 7Z cot(x +m) = C?S(x—i_ﬂ) = _C_Osa: = cotx.
sin(x +m) —sinzx
On en déduit :
1 r—m
t(z) = —m) = - -
cot(z) = cos(x — 7) T — 7 3 +o(x — )
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Partie B. (12 points)

1. (a) (1 point) La fonction f est de classe 6" en 0 et en 1 donc d’apreés la formule de
Taylor Young elle admet en 0 et en 1 les développements limités suivant :

f(x) 5 £(0) + f(0)z + o(z) et f(x) (?)f(l) + f'(1)(z—1) 4+ o(z — 1).

Comme f(0) = f(1) = 0 alors :

f(ﬂ«“)j)f'(o)l“ﬂ%(x) et f(fv)(f)f'(l)(fc—l)vLO(fU—l)-

—

(b) (2 points) Les développements limités des deux questions précédentes montrent
que :

ft)cotrt) = (O -+ o)~ +olt)) = L1

Le développement limité de ¢ — cot(nt) en t = 1 est :

cot(rt) = ﬁl_ﬂ _ mg‘” +ofnt—) — 71”_11—7;(15—1)+0(t—1)
On en déduit :
fOyot(at) = (70— 1)+l — D)+ 5 = 56— 1) ot - 1)
(D)
T r +0o(1)

La fonction g admet donc en 0 et en 1 les développements limités a 'ordre 0 sui-

vants : f’(O) f’(l)
glt) = —=+o(1) et g(t) = —= +o(1)
0 m n m
Ceci montre qu’elle admet une limite finie en 0 et une limite finie en 1, donc elle

est prolongeable par continuite en 0 et en 1, en posant :

9(0) = et g(1)=

(¢) (1 point) La fonction f’ est définie et continue sur [0,1] car f est de classe €', la
fonction g est continue sur [0, 1] d’apres la question précédente, donc par somme et
produit les fonctions ¢ — f(t)g(t) et t — (f'(t) — mg(t))? sont continues.

Ainsi les intégrales I et J sont bien définies.
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2. (2 points) Par définition de la fonction g :
vtelo, 1]  fi(t)g(t) = f'(t)f(t) cot(mt)

On définit :
vte]0,1]  u(t)=f*t) et  w(t) = cot(mt)

Ces fonctions sont de classe 6" sur ]0,1[, de dérivée :
veelo, 1] W) =2f()f(t) et V()= —m(1+ cot*(nt))

De plus les fonctions uv, u'v, et uv’ s’écrivent pour tout ¢ € |0, 1] :

vtelo, 1 (uv)(t) = f(t) cot(mt) = f(t)g(?)
(w'v)(t) = 2f'(t) f(t) cot(mt) =2/'(1)g(t)
(uv')(t) = =7 (f*(t) + f*(t) cot®(mt)) = —m (f*(t) + (1))

Comme les fonctions f, f’, g sont continues en 0 et en 1 alors les fonctions uv, u'v et
uv’ sont prolongeables par continuité en 0 et en 1.

On peut donc appliquer le théoreme d’intégration par parties généralisé :

21::Afzfxog@)dt::[fu%wvagdt

Comme f(0) = f(1) = 0 alors on en déduit :
1
21:W/(ﬂ@y+f@»dt
0
3. (a) (1 point) La fonction ¢ — (f'(t) — mg(t))” est positive sur [0, 1] donc par croissance

de l'intégrale J est positive.

Par linéarité de I'intégrale on obtient :

JZ/Ol(f’(t) —W(t))zdt=/01f’2(t) dt—27r/01f’(t)g(t) dt+7r2/0192(t) dt

(b) (2 points) On reconnait la définition de [ :

1 1
J:/ f’2(t)dt—27r]+7r2/ g*(t)dt
0 0

L’égalité de la question (2) donne :

J= /Olf’Q(t) dt — wz/ol(fQ(t) + g2 (t)) dt + WQ/OIgQ(t) dt
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Par linéarité de 'intégrale :

J:AV%@&-H%%%MM

Comme J est positive on en déduit I'inégalité de Poincaré :
1 1 /1
| rwa= — [P
0 w2 Jo

4. (a) (2 points) On pose, pour tout t € ]0,1[ :  a(t) = 7 cot(nt)
Ainsi : (nt)

7 cos(m
t 1 t) = ——=.

vt e o1 alt) sin(7t)

On remarque que pour tout t € ]0,1[ on a 7t € ]0, 7| donc sin(7t) > 0. On peut
donc définir la fonction A par :

vt €10, 1] A(t) = In(sin(rt)).

La fonction A est dérivable de dérivée a, donc c’est une primitive de a.

Comme |0, 1[ est un intervalle alors par théoréme les solutions de 1’équation

y —a(t)y=0

sont les fonctions t — AeA® = Xsin(7t) ot A est une constante réelle, c’est-a-dire
les fonctions
f:10,1] — R avec A€ R
t — Asin(nt)

(b) (1 point) Soit f une fonction vérifiant les hypotheses de 'inégalité de Poincaré, et
telle que celle-ci soit une inégalité.
D’apres la question (3b) I'inégalité de Poincaré est une inégalité si et seulement si
J=0.
Or la fonction ¢ — (f'(t) — wg(t))? est continue et positive sur [0, 1].

D’apres le théoreme de positivité, comme J = 0 alors :
veel01]  (f'(t) —mg(t))* =0
Ceci donne f'(t) — mg(t) = 0, donc :
vt € [0,1] f'(t) — weot(mt) f(t) =0

Ainsi la fonction f est solution de I’équation différentielle de la question précédente,
et donc f est de la forme ¢ +— Asin(nt).

Les fonctions pour lesquelles 'inégalité de Poincaré est une égalité sont donc les

fonctions :
f:]0,1] — R avec A €R
t — Asin(nt)
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