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Chapitre B6
Structures algébriques

I. Lois de composition internes

A. Définition, propriétés

Définition
Soit E un ensemble. Une loi de composition interne de E est une application de E ×E
dans E :

Pour tous x et y dans E on note x ∗ y au lieu de ∗(x, y).

Exemple 1.
• L’addition, la soustraction, la multiplication sont des lois de composition internes de
Z, Q, R, et de C.

• La soustraction n’est pas une loi de composition interne de N.
• La division n’est pas une loi de composition interne de Z, ni de R, mais de R∗.
• Pour tout ensemble E, l’intersection et l’union sont des lois de composition internes de

P(E).
• Le PGCD (∧) et le PPCM (∨) sont des lois de composition internes de Z et de N.
• Soit K = R ou C, n et p deux entiers strictement positifs.

L’addition des matrices est une loi de composition interne de Mnp(K).
La multiplication des matrices est une loi de composition interne de Mn(K).

• Soit X un ensemble. La loi ◦ est une loi de composition interne de l’ensemble F(X, X)
des fonctions de X dans X.

Définitions
Soit ∗ une loi de composition interne. On dit que la loi ∗ est :
• commutative si : ∀(x, y) ∈ E2 x ∗ y = y ∗ x

• associative si : ∀(x, y, z) ∈ E3 (x ∗ y) ∗ z = x ∗ (y ∗ z).
Si x ∗ y = y ∗ x alors on dit que x et y commutent, ou que x commute avec y.

Exemple 1 (suite). Parmi les lois données en exemples,

les lois non commutatives sont :

les lois non associatives sont :
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Définition
Soit ∇ et ∆ deux lois de composition internes d’un ensemble E. On dit que ∇ est
distributive par rapport à ∆ si :

∀(x, y, z) ∈ E3 x ∇(y ∆ z) = (x ∇ y) ∆(x ∇ z)
et (y ∆ z) ∇ x = (y ∇ x) ∆(z ∇ x)

Exemples.
• La multiplication est distributive par rapport à l’addition.
• L’intersection est distributive par rapport à l’union.
• L’union est distributive par rapport à l’intersection.

B. Symétriques et itérés

Définition
Soit ∗ une loi de composition interne d’un ensemble E. Un élément neutre pour ∗ est
un élément e de E tel que :

∀x ∈ E x ∗ e = e ∗ x = x

Exemples.
• 0 est élément neutre pour la loi + dans Z, Q, R, C.
• 1 est élément neutre pour la loi × dans Z, Q, R, C.
• Les lois − et / n’admettent pas d’élément neutre.
• Les lois ∩ et ∪ de P(E) admettent pour éléments neutres :

• La matrice nulle 0np est élément neutre pour l’addition de Mnp(K).
La matrice identité In est élément neutre pour la multiplication de Mn(K).

• IdX est élément neutre pour la loi ◦ de F(X).

Proposition

Si une loi de composition admet un élément neutre alors celui-ci est unique.

Démonstration. Supposons qu’il existe deux éléments neutres e et e′ pour une loi de
composition interne ∗.
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Définition
Soit E un ensemble muni d’une loi de composition interne ∗ associative admettant un
élément neutre.
Un élément x de E est dit symétrisable si :

∃y ∈ E x ∗ y = y ∗ x = e

Cet élément y est alors unique, il est appelé symétrique de x.

▶▷ Exercice 1.
Remarque. Si la loi ∗ est commutative, il suffit de vérifier x ∗ y = e. De même pour
l’élément neutre il suffit de vérifier que x ∗ e = x pour tout x ∈ E.
Exemples.
• Un élément de R est symétrisable pour la loi × si et seulement s’il est non-nul. On

note x−1 son symétrique, et on l’appelle inverse de x.
• Les seuls éléments de Z symétrisables pour la loi × sont 1 et −1.
• Tout élément de Z et de R est symétrisable pour la loi +, on note −x son symétrique

et on l’appelle opposé de x.
• De même pour les matrices, la matrice −M , opposée de M , est la symétrique de M

pour l’addition des matrices.
La symétrique d’une matrice inversible A pour la loi × est la matrice inverse A−1.

• Soit X un ensemble et f un élément de F(X), c’est-à-dire une application de X dans
X. Alors f est symétrisable pour la loi ◦ si et seulement si il existe g : X → X telle
que f ◦ g = IdX et g ◦ f = IdX .
Ainsi une application de X dans X est symétrisable si et seulement si elle est bijective,
sa symétrique est alors sa réciproque, elle est notée f−1.

Notation
Le symétrique de x est noté x−1, sauf pour la loi + auquel cas il est noté −x.

▶▷ Exercice 2.

Proposition
Soit E un ensemble muni d’une loi de composition interne ∗ associative, et d’un élément
neutre e.
Si x et y sont symétrisables alors x ∗ y est symétrisable.
Son symétrique est (x ∗ y)−1 = y−1 ∗ x−1.

Démonstration. L’associativité de la loi ∗ permet d’écrire :

(x ∗ y) ∗ (y−1 ∗ x−1) = x ∗ (y ∗ y−1) ∗ x−1 = x ∗ e ∗ x−1 = e

et (y−1 ∗ x−1) ∗ (x ∗ y) = y−1 ∗ (x−1 ∗ x) ∗ y = y−1 ∗ e ∗ y = e

Par définition x ∗ y est symétrisable de symétrique y−1 ∗ x−1. □
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Définition
Soit ∗ une loi de composition interne associative sur un ensemble E.
Pour tout x de E les puissances ou itérés de x sont définies par récurrence par x1 = x
puis pour tout n ∈ N∗ : xn+1 = x ∗ xn.
Si E possède un élément neutre e pour ∗ alors on pose x0 = e.
Si de plus x est symétrisable alors on note x−n le symétrique de xn pour tout n ∈ N.

Proposition
On garde les hypothèses de la définition ci-dessus. Alors pour tout x ∈ E :

∀(m, n) ∈ (N∗)2 xm+n = xm ∗ xn et (xm)n = xmn

Si E admet un élément neutre ces formules sont valables pour tout (m, n) ∈ N2, si x
est symétrisable elles sont valables pour tout (m, n) ∈ Z2.

Démonstration. On démontre ces deux formules par récurrence sur n en fixant m.
Les extensions aux entiers relatifs s’en déduisent en passant au symétrique. □

Notation
Pour la loi + on note nx au lieu de xn. La propriété ci-dessus s’écrit :

(m + n)x = mx + nx et m(nx) = (mn)x

C. Stabilité

Définition
Soit E un ensemble muni d’une loi de composition interne ∗. Une partie F de E est
dite stable par ∗ si :

Exemples.
• Z est une partie de R stable par + et ×.
• {±1} est une partie de Z stable par × mais pas par +.

Pour tout n ∈ Z, nZ est une partie de Z stable par + et par ×.
• R est une partie de C stable par + et par ×.

iR est une partie de C stable par + mais pas par ×.
U est une partie de C non stable par + mais stable par ×.

• Si A ⊆ E alors P(A) est une partie de P(E) stable par ∩ et ∪.
• Dn(K), Tn(K), T′

n(K) sont des parties de Mn(K) stables par addition et produit.
Sn(K) et An(K) sont stables par addition mais pas par produit.

• L’ensemble des fonctions affines de R dans R est une partie de F(R) stable par ◦.
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Définition
Soit E un ensemble muni d’une loi de composition interne ∗. Soit A une partie de E
stable par ∗. Alors la restriction de ∗ à A × A est une loi de composition interne de A.

∗ : A × A −→ A
(x, y) 7−→ x ∗ y

On dit qu’elle est induite par la loi ∗ de E.

Remarque. Si ∗ est associative ou commutative alors la loi induite ∗ l’est également.

II. Groupes

A. Définition et exemples

Définition
Un groupe (G, ∗) est un ensemble G muni d’une loi ∗ vérifiant les propriétés :
(g1) La loi ∗ est une loi de composition interne de G.
(g2) La loi ∗ est associative.
(g3) G contient un élément neutre pour ∗.
(g4) Tout élément de G possède un symétrique pour la loi ∗.
Un groupe commutatif ou groupe abélien est un groupe (G, ∗) tel que :
(g5) La loi ∗ est commutative.

Exemples.
• (Z, +), (Q, +), (R, +), (C, +), (Mnp(K), +) sont des groupes abéliens.

Leurs éléments neutres respectifs sont 0Z = 0Q = 0R = 0C et 0n,p.
• (N, +) n’est pas un groupe, car tout élément n’admet pas d’opposé.
• (Z, −) n’est pas un groupe car sa loi de composition interne n’est pas associative.
• (Q∗, ×), (R∗, ×), (C∗, ×) sont des groupes abéliens. Leur élément neutre est 1.
• (Z∗, ×) n’est pas un groupe, car par exemple 2 n’a pas d’inverse dans Z.
• Soit G = {±1}. Alors (G, ×) est un groupe.
• Soit X un ensemble. On note SX ou B(X) l’ensemble des applications bijectives de X

dans X. Alors (SX , ◦) est un groupe. L’élément neutre est IdX .
Il n’est pas commutatif dès que X contient au moins trois éléments.

Exemple 2. Description de (SX , ◦) si X = {1, 2}.
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Définition
Les groupes munis d’une loi d’addition + sont appelés groupe additifs.
• Ils sont toujours commutatifs par convention.
• Leur élément neutre est noté 0G.
• Le symétrique d’un élément x est noté −x et appelé opposé de x.
• Les itérés de x sont notés nx avec n ∈ Z.
• On note aussi x − y au lieu de x + (−y).

Proposition
Dans un groupe tout élément est régulier, i.e., simplifiable à gauche et à droite :

∀(x, y, z) ∈ G3 x ∗ y = x ∗ z =⇒ y = z
y ∗ x = z ∗ x =⇒ y = z

Démonstration. En effet, tout élément x de G admet un symétrique x−1, et la loi ∗ est
associative, donc :

Remarque. Soit (G, ∗) un groupe fini.
On peut construire la table de composition de (G, ∗). La proposition ci-dessous montre
que tout élément de G apparaît une et une seule fois dans chaque ligne et chaque colonne.
Exemple 3.
(i) Table de composition d’un groupe G à deux éléments, en notant G = {e, a}.

(ii) Table de composition d’un groupe G à trois éléments, en notant G = {e, a, b}.

▶▷ Exercice 3.
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Proposition - Définitions
Soit (G, ∗) et (G′, ∗′) deux groupes, d’éléments neutres respectifs e et e′.
• La loi produit des lois ∗ et ∗′ est la loi définie sur G × G′ par :

∀((x, x′), (y, y′)) ∈ (G × G′)2 (x, x′) · (y, y′) = (x ∗ y, x′ ∗′ y′)

Il s’agit d’une loi de composition interne de G × G′.
• De plus (G × G′, ·) est un groupe, appelé groupe produit de (G, ∗) et (G′, ∗′).

Son élément neutre est (e, e′).
Le symétrique d’un élément (x, x′) est (x, x′)−1 =

(
x−1, x′−1

)
.

• On définit de même le produit de plusieurs groupes.

Démonstration. Les propriétés (g1) à (g4) sont toutes vérifiées. □

Exemple. L’ensemble R2 est un groupe additif avec la loi :

∀((x, x′), (y, y′)) ∈
(
R2

)2
(x, x′) + (y, y′) = (x + y, x′ + y′)

L’élément neutre est 0R2 = (0, 0). L’opposé de (x, y) est −(x, y) = (−x, −y).

B. Sous-groupes

Définition
Soit (G, ∗) un groupe. Un ensemble H est un sous-groupe de G si :
(sg1) H est inclus dans G.
(sg2) H est non-vide.
(sg3) H est stable par ∗ : ∀(x, y) ∈ H2 x ∗ y ∈ H

(sg4) H est stable par passage au symétrique : ∀x ∈ H x−1 ∈ H

En d’autres termes, un sous-groupe de G est un sous-ensemble de G non-vide, stable
par sa loi de composition interne et par passage au symétrique.

Exemples.
• Si (G, ∗) est un groupe, alors {e} et G sont des sous-groupes de (G, ∗).
• (Z, +) est un sous-groupe de (Q, +), qui est un sous-groupe de (R, +), qui est un

sous-groupe de (C, +).
• ({±1} , ×) est un sous-groupe de (Q∗, ×), qui est un sous-groupe de (R∗, ×), qui est

un sous-groupe de (C∗, ×).
• R∗

+ est un sous-groupe de (R∗, ×), mais R∗
− n’en est pas un.

• L’ensemble 2Z = {2n | n ∈ Z} des entiers pairs est un sous-groupe de (Z, +).
• Dn(K), Tn(K), T′

n(K), Sn(K), An(K) sont des sous-groupes de (Mn(K), +).
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Proposition
Si H est un sous-groupe de (G, ∗) alors (H, ∗) est un groupe, où ∗ est la loi de compo-
sition de H induite par ∗.

Démonstration. On vérifie les quatre points de la définition d’un groupe.
(g1) La loi induite est une loi de composition interne de H car H stable par ∗.
(g2) Elle est associative car la loi ∗ de G l’est.
(g3) Démontrons que H contient l’élément neutre e de G.

D’après le point (sg2) H est non-vide donc il contient au moins un élément x.
D’après le point (sg4) H est stable par inversion donc x−1 appartient aussi à H.
D’après le point (sg3) H stable par la loi ∗ donc il contient aussi x ∗ x−1 = e.

(g4) D’après le point (sg4) tout élément de H admet un symétrique dans H, c’est son
symétrique dans G.

Ces quatre propriétés montrent que le couple (H, ∗) est un groupe. □

Méthode
• Pour vérifier qu’un couple (G, ∗) est un groupe, on peut démontrer que c’est un

sous-groupe d’un groupe plus gros (G′, ∗).
• Pour démontrer qu’il est non-vide on montre qu’il contient l’élément neutre.

▶▷ Exercices 4, 5.

C. Morphismes

Définition
Soit E et E ′ deux ensembles, ∗ une loi de composition interne de E et ∗′ une loi de
composition interne de E ′.
Un morphisme de (E, ∗) dans (E ′, ∗′) est une application f : E → E ′ compatible avec
les lois de composition internes, i.e., telle que :

Définitions
• Un homomorphisme est un morphisme.
• Un endomorphisme est un morphisme de (E, ∗) dans lui-même.
• Un isomorphisme est un morphisme bijectif.
• Un automorphisme est un endomorphisme bijectif.
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Exemple 4.
• L’application R −→ R

x 7−→ ex

est un morphisme de (R, +) dans (R, ×).

• L’application R∗
+ −→ R

x 7−→ ln x
est un isomorphisme de

(
R∗

+, ×
)

dans (R, +).

Proposition

La composée de deux morphismes est un morphisme.

Démonstration. Soit f : (E, ∗) → (E ′, ∗′) et g : (E ′, ∗′) → (E ′′, ∗′′) deux morphismes.
Alors :

Donc g ◦ f est un morphisme. □

Proposition

La réciproque d’un isomorphisme est un isomorphisme.

Démonstration.
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Définition
Un morphisme de groupes est un morphisme d’un groupe vers un autre, i.e., un mor-
phisme de (G, ∗) dans (G′, ∗′) où (G, ∗) et (G′, ∗′) sont deux groupes.

Exemple 5.
• L’application R∗

+ −→ R

x 7−→ ln x
est un isomorphisme de groupes de

(
R∗

+, ×
)

dans (R, +).

• L’application R −→ C∗

θ 7−→ eiθ

est un morphisme de groupes de (R, +) dans (C∗, ×).

Cadre
Dans toute la suite on note (G, ∗) et (G′, ∗′) deux groupes, et e, e′ leurs éléments
neutres respectifs.

Proposition
Soit f : (G, ∗) → (G′, ∗′) un morphisme de groupes. Alors :
(i) f(e) = e′.

(ii) Pour tout x ∈ G : f(x−1) = f(x)−1

(iii) Pour tout x ∈ G et tout n ∈ Z : f(xn) = (f(x))n

Démonstration.

(iii) On démontre la propriété pour tout n ∈ N∗ par récurrence, puis pour n = 0 grâce au
(i), et pour tout n ∈ Z− grâce au (ii), car x−n est l’inverse de xn. □

Exemple 5 (suite). Dans le cas du logarithme, ces propriétés s’écrivent :

ln 1 = 0 ∀x ∈ R∗
+ ln

(
1
x

)
= − ln x ∀(x, n) ∈ R∗

+ × Z ln(xn) = n ln x

▶▷ Exercice 6.
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D. Noyau et image

Proposition
Soit f : G → G′ un morphisme de groupes.
• Si H est un sous-groupe de G alors f(H) est un sous-groupe de G′.
• Si H ′ est un sous-groupe de G′ alors f−1(H ′) est un sous-groupe de G.

Démonstration. Soit H un sous-groupe de G. On vérifie les quatre points de définition
d’un sous groupe.
(sg1) f(H) est inclus dans G′, car H ⊆ G et f va de G dans G′.
(sg2) Comme H est un sous-groupe de G alors il contient e, donc f(H) contient f(e) = e′,

i.e., e′ ∈ f(H).
(sg3) Soit x′ et y′ deux éléments de f(H). Alors il existe x et y dans H tels que x′ = f(x)

et y′ = f(y).
Comme H est un sous-groupe de G alors il est stable par ∗ donc x ∗ y ∈ H.
Or f(x) ∗′ f(y) = f(x ∗ y) donc f(x) ∗′ f(y) ∈ f(H), puis x′ ∗′ y′ ∈ f(H).
Ceci montre que f(H) est stable par ∗.

(sg4) Soit x′ un élément de f(H). Alors il existe x ∈ H tel que x′ = f(x).
Comme H est un sous-groupe de G alors il est stable par passage à l’inverse, donc
x−1 ∈ H. Ainsi f(x−1) ∈ f(H). Or f(x−1) = f(x)−1, donc (x′)−1 ∈ f(H).
Ceci montre que f(H) est stable par passage à l’inverse.

Les quatre points ci-dessus montrent que f(H) est un sous-groupe de G′.
Soit maintenant H ′ un sous-groupe de G′.
(sg1) Comme f−1(H ′) = {x ∈ G | f(x) ∈ H ′} alors f−1(H ′) ⊆ G.
(sg2) Comme H ′ est un sous-groupe de G′ alors il contient son élément neutre e′.

Comme f(e) = e′ alors e ∈ f−1(H ′).
(sg3) Soit x et y deux éléments de f−1(H ′). Alors f(x) et f(y) appartiennent à H ′.

Comme H ′ est un sous-groupe de G′ alors il est stable par ∗′ donc f(x)∗′ f(y) ∈ H ′.
Comme f est un morphisme de groupes alors f(x)∗′ f(y) = f(x∗y), donc f(x∗y) ∈
H ′, ce qui montre que x ∗ y ∈ f−1(H ′).
Ainsi f−1(H ′) est stable par ∗.

(sg4) Soit x un élément de f−1(H ′). Alors f(x) ∈ H ′.
Comme H ′ est un sous-groupe de G′ alors il est stable par passage à l’inverse,
donc f(x)−1 ∈ H ′. Or f(x)−1 = f(x−1) donc f(x−1) ∈ H ′, ce qui montre que
x−1 ∈ f−1(H ′), et donc f−1(H ′) est stable par passage à l’inverse.

Les quatre points ci-dessus montrent que f−1(H ′) est un sous-groupe de G. □
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Exemples. On sait que {e} est un sous-groupe de G et G′ est un sous-groupe de G′. Or :

f({e}) = f−1(G′) =

Ce sont bien des sous-groupes respectivement de G′ et de G.

Définitions
Soit f : G → G′ un morphisme de groupes.
On appelle image de f et on note im f l’ensemble :

On appelle noyau de f et on note ker f l’ensemble :

Proposition

L’image de f est un sous-groupe de G′, le noyau de f est un sous-groupe de G.

Remarque. Caractérisation des éléments de l’image et du noyau.

Exemple 5 (suite). Déterminer le noyau et l’image de f : (R, +) −→ (C∗, ×)
θ 7−→ eiθ

Théorème
Soit f : G → G′ un morphisme de groupes. Alors :
(i) f est surjectif si et seulement si im f = G′.

(ii) f est injectif si et seulement si ker f = {e}.

Démonstration.
(i) Par définition le morphisme f est surjectif si et seulement si :

∀x′ ∈ G′ ∃x ∈ G f(x) = x′.

Ceci signifie exactement G′ ⊆ im f , donc im f = G′ car l’inclusion réciproque est
immédiate.
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(ii)

▶▷ Exercice 6 (suite).

III. Anneaux et corps

A. Anneaux

Définition
Un anneau (A, +, ×) est un ensemble A muni de deux lois de composition internes +
et × telles que :
(a1) (A, +) est un groupe abélien.
(a2) La loi × est associative.
(a3) A possède un élément neutre pour ×.
(a4) La loi × est distributive par rapport à la loi +.
Un anneau commutatif est un anneau dans lequel :
(a5) La loi × est commutative.

Remarques.
• On omet souvent de noter le signe × : xy = x × y.
• On note 0A l’élément neutre pour la loi + de A. On l’appelle élément nul de A.
• On note 1A l’élément neutre pour la loi × de A. On l’appelle unité de A.
• On appelle inverse d’un élément x de A l’inverse de x pour la loi ×.

Les éléments d’un anneau admettent tous un opposé mais pas tous un inverse.
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Exemples.
• (Z, +, ×), (Q, +, ×), (R, +, ×) et (C, +, ×) sont des anneaux. Tous sont commutatifs.

On remarque que 2 n’a pas d’inverse dans Z.
• (R2, +, ×) est un anneau commutatif, muni des lois :

∀((x, y), (x′, y′)) ∈ (R2)2 (x, y) + (x′, y′) = (x + x′, y + y′)
(x, y) × (x′, y′) = (xx′, yy′)

On vérifie que tous les axiomes sont satisfaits.
Les éléments neutres sont (0, 0) et (1, 1).
L’opposé de (x, y) est −(x, y) = (−x, −y).
Le couple (x, y) est inversible si et seulement si x et y sont non-nuls, son inverse est
alors (x, y)−1 = (x−1, y−1).
Démontrons par exemple la distributivité. Soit u = (x, y), v = (x′, y′) et w = (x′′, y′′)
trois éléments de R2. Alors :

(u + v) × w = [(x, y) + (x′, y′)] × (x′′, y′′)
= (x + x′, y + y′) × (x′′, y′′)
= ((x + x′)x′′, (y + y′)y′′)
= (xx′′ + x′x′′, yy′′ + y′y′′)
= (xx′′, yy′′) + (x′x′′, y′y′′)
= (x, y) × (x′′, y′′) + (x′, y′) × (x′′, y′′) = u × w + v × w

Comme la loi × est commutative, la distributivité dans l’autre sens est aussi vérifiée.
• Soit X un ensemble quelconque et A = F(X,R). On munit A des lois + et × suivantes :

Si f et g sont deux éléments de A, alors f + g et f × g sont les fonctions définies par :

∀x ∈ X (f + g)(x) = f(x) + g(x) et (f × g)(x) = f(x)g(x)

Alors (A, +, ×) est un anneau, il est commutatif.
L’élément nul est la fonction nulle, i.e., la fonction constante égale à 0, et l’unité est
la fonction constante égale à 1.

• L’ensemble RN des suites indexées par N muni de l’addition et de la multiplication
usuelles est un anneau.
L’élément nul est la suite nulle, l’unité est la suite constante égale à 1.

• L’ensemble Mn(K) muni de l’addition et de la multiplication matricielles est un anneau.
Il n’est pas commutatif.
L’élément nul est la matrice nulle 0n, l’unité est la matrice identité In.

• L’ensemble K[X] des polynômes à coefficients dans K est un anneau commutatif.

▶▷ Exercice 7.
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B. Propriétés
Soit (A, +, ×) un anneau.

Proposition

Pour tout x ∈ A : 0A × x = 0A = x × 0A (0A est dit élément absorbant).

Démonstration.

Remarque. Dans un anneau on peut avoir xy = 0A alors que ni x ni y n’est nul.
En d’autres termes l’implication

(x = 0A ou y = 0A) =⇒ xy = 0A

n’est pas une équivalence.

Définition
Un anneau A est dit intègre s’il est commutatif et :

Exemples.
• Z, Q, R, C sont des anneaux intègres.
• (R2, +, ×) n’est pas intègre. En effet (1, 0) et (0, 1) ne sont pas nuls, alors que leur

produit est nul.
• L’anneau

(
RN, +, ×

)
des suites réelles n’est pas intègre.

• (Mn(K), +, ×) n’est pas intègre car non seulement il n’est pas commutatif, mais en
plus il existe des matrices non-nulles dont le produit est nul.

▶▷ Exercice 8.

Propositions
• (Formule du binôme de Newton) Soit a et b deux éléments de A tels que ab = ba

(i.e., a et b commutent). Alors pour tout n ∈ N :

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

• Soit a et b deux éléments de A tels que ab = ba. Alors pour tout n ∈ N :

an − bn = (a − b)(an−1 + an−2b + · · · + abn−2 + bn−1) = (a − b)
n−1∑
k=0

an−1−kbk
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Notation
Soit (A, +, ×) un anneau. On note A∗ l’ensemble des éléments inversibles de A, i.e.,
des éléments inversibles pour la loi ×.

Proposition - Définition

Le couple (A∗, ×) est un groupe, appelé groupe des inversibles de A.

Démonstration. On vérifie les quatre points de la définition d’un groupe.
(g1) Le produit de deux éléments inversibles est inversible, donc A∗ est stable par la loi

×. Ainsi la loi × de A∗ est induite par celle de A. C’est donc une loi de composition
interne.

(g2) La loi × d’un anneau est associative donc la loi × de A∗ est associative.
(g3) L’anneau A contient un élément neutre pour la loi ×. Cet élément est inversible

(d’inverse lui-même) donc il appartient à A∗. Ainsi A∗ possède un élément neutre
pour sa loi ×.

(g4) Si x appartient à A∗ alors x est inversible. Son inverse x−1 est inversible d’inverse x,
ce qui montre que x−1 appartient à A∗.
Ainsi tout élément de A∗ possède un inverse dans A∗.

Tout ceci montre que (A∗, ×) est un groupe. □

Exemples.
• Le groupe des inversible de l’anneau (R, +, ×) est (R∗, ×).

De même pour C et Q.
• Le groupe des inversibles de (Z, +, ×) est ({±1} , ×).

Il est incorrect de noter Z∗ pour Z \ {0}.
• Le groupe des inversible de Mn(K) est GLn(K), appelé nème groupe linéaire de K.

C. Corps

Définition
Un corps (K, +, ×) est un anneau commutatif non réduit à 0 dans lequel tout élément
non-nul est inversible.

Remarques.
• Un anneau commutatif K non-nul est donc un corps si et seulement si : K∗ = K \{0}
• Si x est un élément non-nul de K alors on note 1

x
= x−1 et y

x
= y × 1

x
.

Exemples.
• Q, R et C sont des corps.
• Z n’est pas un corps, par exemple car 2 n’est pas inversible dans Z.
• L’ensemble des polynômes R[X] n’est pas un corps.

En effet ses éléments inversibles sont les polynômes non-nuls de degré 0.
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Proposition

Un corps est intègre.

Démonstration.

D. Sous-anneaux

Définition
Soit A un anneau. Un ensemble B est un sous-anneau de A si :
(sa1) (B, +) est un sous-groupe de (A, +).
(sa2) 1A appartient à B.
(sa3) B est stable par ×.

Propositions
• Si B est un sous-anneau de A alors B est un anneau.
• Si B est une partie de A contenant 1A, stable par +, ×, et passage à l’opposé alors

B est un sous-anneau de A.

Exemples.
• Z est un sous-anneau de R.
• Dn(K), Tn(K), T′

n(K) sont des sous-anneaux de Mn(K).
• {0A} est un sous-groupe de (A, +), il est stable par ×, mais ce n’est pas un sous-anneau

de A, car il ne contient par 1A.

▶▷ Exercice 9.
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E. Morphismes d’anneaux
Soit A et A′ deux anneaux.
On note de la même façon les additions et les multiplications de A et de A′, pour alléger
les notations.

Définition
Un morphisme d’anneaux est une application f : A → A′ vérifiant :
(ma1) ∀(a, b) ∈ A2 f(a + b) = f(a) + f(b)
(ma2) ∀(a, b) ∈ A2 f(ab) = f(a)f(b)
(ma3) f(1A) = 1A′

Remarques.
• On définit également les isomorphismes, endomorphismes et automorphismes d’an-

neaux.
• Un morphisme d’anneaux f : A → A′ est en particulier un morphisme de groupes de

(A, +) dans (A′, +).
• Le noyau ker f = f−1({0A′}) et l’image im f = f(A) sont toujours définis.

L’image de f est un sous-anneau de A′ mais en général le noyau de f n’est pas un
sous-anneau de A. En effet il ne contient pas obligatoirement 1A.

• On a toujours l’équivalence, pour un morphisme d’anneaux :

f injectif ⇐⇒ ker f = {0A}
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