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Chapitre B6
Structures algébriques

I. Lois de composition internes

A. Définition, propriétés

_ | Définition

Soit ' un ensemble. Une loi de composition interne de E est une application de £ x E
dans F :

Pour tous x et y dans E on note x * y au lieu de *(x,y).

Exemple 1.
o L’addition, la soustraction, la multiplication sont des lois de composition internes de
Z,Q, R, et de C.
» La soustraction n’est pas une loi de composition interne de IN.
e La division n’est pas une loi de composition interne de Z, ni de R, mais de R*.
» Pour tout ensemble F, 'intersection et I'union sont des lois de composition internes de
e Le PGCD (A) et le PPCM (V) sont des lois de composition internes de Z et de IN.
e Soit K =R ou C, n et p deux entiers strictement positifs.
L’addition des matrices est une loi de composition interne de ,,(IK).
La multiplication des matrices est une loi de composition interne de 4, (K).

¢ Soit X un ensemble. La loi o est une loi de composition interne de I’'ensemble (X, X)
des fonctions de X dans X.

ﬁ( Définitions |
Soit * une loi de composition interne. On dit que la loi * est :

o commutative si: V(z,y) € E* THY=Y*T

* associative si : V(x,y,2) € E® (xxy)*z=x*(yx*2).

Si xxy=yx*xx alorson dit que x et y commutent, ou que x commute avec y.

Exemple 1 (suite). Parmi les lois données en exemples,

les lois non commutatives sont :

les lois non associatives sont :
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Chapitre B6. Structures algébriques I. Lois de composition internes

| Définition
Soit V et A deux lois de composition internes d’un ensemble E. On dit que V est
distributive par rapport a A si :

V(z,y,2) € E? zV(yAz)=(xVy) AV z)
et (YAz)Vr=(yVzr)A(zVz)

Exemples.

e La multiplication est distributive par rapport a ’addition.
o L’intersection est distributive par rapport a 'union.

e L’union est distributive par rapport a l'intersection.

B. Symétriques et itérés

Définition
Soit * une loi de composition interne d'un ensemble E. Un élément neutre pour * est
un élément e de E tel que :

Ve e FE rT*xe=exr =2z

Exemples.

* 0 est élément neutre pour la loi + dans Z, Q, R, C.

1 est élément neutre pour la loi x dans Z, @, R, C.

Les lois — et / n’admettent pas d’élément neutre.

Les lois N et U de 2(FE) admettent pour éléments neutres :

La matrice nulle 0, est élément neutre pour 'addition de ., (K).

La matrice identité I,, est élément neutre pour la multiplication de A, (K).

Idx est élément neutre pour la loi o de F(X).

Proposition ]

Si une loi de composition admet un élément neutre alors celui-ci est unique.

Démonstration. Supposons qu’il existe deux éléments neutres e et €/ pour une loi de
composition interne .
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Chapitre B6. Structures algébriques I. Lois de composition internes

_| Définition

Soit E/ un ensemble muni d’une loi de composition interne * associative admettant un
élément neutre.

Un élément x de E est dit symétrisable si :
Jye E TxY=yxxr=e¢€

Cet élément y est alors unique, il est appelé symétrique de x.

Exercice 1.

Remarque. Si la loi * est commutative, il suffit de vérifier = * y = e. De méme pour
I’élément neutre il suffit de vérifier que = * e = = pour tout =z € F.

Exemples.

Un élément de R est symétrisable pour la loi x si et seulement s’il est non-nul. On
note ! son symétrique, et on I'appelle inverse de .

Les seuls éléments de Z symétrisables pour la loi x sont 1 et —1.

Tout élément de Z et de R est symétrisable pour la loi +, on note —x son symétrique
et on 'appelle opposé de .

De méme pour les matrices, la matrice —M, opposée de M, est la symétrique de M
pour 'addition des matrices.

La symétrique d’une matrice inversible A pour la loi X est la matrice inverse A=,
Soit X un ensemble et f un élément de F(X), c’est-a-dire une application de X dans
X. Alors f est symétrisable pour la loi o si et seulement si il existe g : X — X telle
que fog=Idx et go f =Idy.

Ainsi une application de X dans X est symétrisable si et seulement si elle est bijective,
sa symétrique est alors sa réciproque, elle est notée f~1.

Notation
Le symétrique de z est noté !, sauf pour la loi + auquel cas il est noté —zx. }

Exercice 2.

Proposition ]

Soit ' un ensemble muni d’une loi de composition interne * associative, et d’un élément
neutre e.

Si x et y sont symétrisables alors x * y est symétrisable.

Son symétrique est (xxy)~t =yt xz7L

Démonstration. L’associativité de la loi * permet d’écrire :

(zxy)*(y txr ) =ax(yxy D =zxexat=e¢

et (Y lxa N*x(x*xy)=y ' x(@ xa)xy=y Txexy=c¢

Par définition x * y est symétrisable de symétrique y~! x 271 O
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Chapitre B6. Structures algébriques I. Lois de composition internes

_| Définition

Soit * une loi de composition interne associative sur un ensemble F.

Pour tout  de E les puissances ou itérés de x sont définies par récurrence par 2! = x
puis pour tout n € N* : 2"t = g x 2™,

Si E posseéde un élément neutre e pour * alors on pose z° = e.

Si de plus x est symétrisable alors on note x=" le symétrique de x™ pour tout n € IN.

ﬁ[ Proposition ]
On garde les hypotheses de la définition ci-dessus. Alors pour tout = € E :

V(m,n) € (N*)? Gt = et (™)t =™

Si E admet un élément neutre ces formules sont valables pour tout (m,n) € N?, si x
est symétrisable elles sont valables pour tout (m,n) € Z>.

Démonstration. On démontre ces deux formules par récurrence sur n en fixant m.

Les extensions aux entiers relatifs s’en déduisent en passant au symétrique. U

Notation

Pour la loi + on note nz au lieu de z". La propriété ci-dessus s’écrit :

(m+n)z=mr+nx e  m(nx)=(mn)x

C. Stabilité

| Définition
Soit E/ un ensemble muni d’une loi de composition interne *. Une partie F' de E est
dite stable par * si :

Exemples.

e 7. est une partie de R stable par + et x.

{£1} est une partie de Z stable par x mais pas par +.

Pour tout n € Z, nZ est une partie de 7 stable par + et par X.

* R est une partie de C stable par + et par x.
1R est une partie de C stable par + mais pas par x.
U est une partie de C non stable par 4+ mais stable par x.

e Si A C E alors 2(A) est une partie de 2?(E) stable par N et U.

s 9,(K), 7,(K), 7,,(K) sont des parties de ., (K) stables par addition et produit.
In(K) et o, (K) sont stables par addition mais pas par produit.

e L’ensemble des fonctions affines de R dans R est une partie de F(R) stable par o.

4 B. Gonard



Chapitre B6. Structures algébriques II. Groupes

| Définition
Soit £ un ensemble muni d’une loi de composition interne . Soit A une partie de E
stable par *. Alors la restriction de x a A X A est une loi de composition interne de A.

x: AXxA — A
(z,y) —> z*y

On dit qu’elle est induite par la loi * de E.

Remarque. Si * est associative ou commutative alors la loi induite % 'est également.

II. Groupes

A. Définition et exemples

_| Définition

Un groupe (G, %) est un ensemble G muni d’une loi % vérifiant les propriétés :

(G1) La loi x est une loi de composition interne de G.

(G2) La loi * est associative.

(G3) G contient un élément neutre pour .

(G4) Tout élément de G possede un symétrique pour la loi .

Un groupe commutatif ou groupe abélien est un groupe (G, *) tel que :

(G5) La loi * est commutative.

Exemples.
e (Z,4), (Q,+), (R,+), (C,+), (M,,(K),+) sont des groupes abéliens.
Leurs éléments neutres respectifs sont 0z = Og = Or = O¢ et 0, .
e (IN,+) n’est pas un groupe, car tout élément n’admet pas d’opposé.
e (Z,—) n’est pas un groupe car sa loi de composition interne n’est pas associative.
e (Q*, %), (R*, x), (C*, x) sont des groupes abéliens. Leur élément neutre est 1.
o (Z*, x) n’est pas un groupe, car par exemple 2 n’a pas d’inverse dans Z.
e Soit G = {£1}. Alors (G, x) est un groupe.
¢ Soit X un ensemble. On note Sx ou %B(X) I'ensemble des applications bijectives de X
dans X. Alors (Sx, o) est un groupe. L’élément neutre est Idx.
Il n’est pas commutatif des que X contient au moins trois éléments.
Exemple 2. Description de (S, o) si X = {1,2}.
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Chapitre B6. Structures algébriques II. Groupes

_| Définition

Les groupes munis d’une loi d’addition + sont appelés groupe additifs.

o IlIs sont toujours commutatifs par convention.

e Leur élément neutre est noté Oq.

e Le symétrique d’un élément x est noté —x et appelé opposé de x.
Les itérés de x sont notés nx avec n € Z.

On note aussi z — y au lieu de = + (—y).

/_( Proposition ]

Dans un groupe tout élément est régulier, i.e., simplifiable a gauche et a droite :

Y(z,y,z) € G® T*Y=CT*xz —> Yy==2
YkT=2%x =—> Yy=2

Démonstration. En effet, tout élément x de G admet un symétrique 7!, et la loi * est
associative, donc :

Remarque. Soit (G, *) un groupe fini.
On peut construire la table de composition de (G, ). La proposition ci-dessous montre
que tout élément de GG apparait une et une seule fois dans chaque ligne et chaque colonne.

Exemple 3.
(i) Table de composition d’un groupe G a deux éléments, en notant G = {e, a}.

(7i) Table de composition d'un groupe G a trois éléments, en notant G' = {e, a, b}.

> Exercice 3.
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Chapitre B6. Structures algébriques II. Groupes

ﬁ[ Proposition - Définitions ]

N
Soit (G, *) et (G, ") deux groupes, d’éléments neutres respectifs e et €’
e La loi produit des lois * et *” est la loi définie sur G x G’ par :
V((z,2),(y,9)) € (GxG)  (2,2) (y,4) = (xxy, 2 ¥ ¢)
Il s’agit d’une loi de composition interne de G x G'.
e De plus (G x G, -) est un groupe, appelé groupe produit de (G, *) et (G', *).
Son élément neutre est (e, €').
Le symétrique d'un élément (z, ) est (m,x’)_l = (xfl,x’_l).
e On définit de méme le produit de plusieurs groupes.
Démonstration. Les propriétés (G1) a (G4) sont toutes vérifiées. O

Exemple. L’ensemble R? est un groupe additif avec la loi :
2
Y((z,7), (1,9) € (R?) (@,2)+ (0,9) = (@ +y,2" +Y)

L’élément neutre est Ogz = (0,0). L’opposé de (z,y) est —(z,y) = (—z, —y).

B. Sous-groupes

_ | Définition N

Soit (G, *) un groupe. Un ensemble H est un sous-groupe de G si :

(sG1) H est inclus dans G.

(sGo) H est non-vide.

(SG3) H est stable par x : V(z,y) € H> zxy€ H

(SG4) H est stable par passage au symétrique : Vre H z'e H

En d’autres termes, un sous-groupe de GG est un sous-ensemble de GG non-vide, stable
par sa loi de composition interne et par passage au symétrique.

Exemples.

¢ Si (G,*) est un groupe, alors {e} et G sont des sous-groupes de (G, *).

e (Z,+) est un sous-groupe de (Q,+), qui est un sous-groupe de (R,+), qui est un
sous-groupe de (C, +).

e ({£1}, x) est un sous-groupe de (Q*, x), qui est un sous-groupe de (R*, X), qui est
un sous-groupe de (C*, x).

« R* est un sous-groupe de (R*, x), mais R* n’en est pas un.

e L’ensemble 2Z = {2n | n € Z} des entiers pairs est un sous-groupe de (Z, +).

e 9,(K), T,(K), T, (K), .(K), 4, (K) sont des sous-groupes de (M, (K),+).
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Proposition ]

Si H est un sous-groupe de (G, %) alors (H, *) est un groupe, ou * est la loi de compo-
sition de H induite par .

Démonstration. On vérifie les quatre points de la définition d’un groupe.

(G1) La loi induite est une loi de composition interne de H car H stable par .
(G2) Elle est associative car la loi * de G Dest.
(G3) Démontrons que H contient I’élément neutre e de G.
D’apres le point (SGg) H est non-vide donc il contient au moins un élément .
D’apres le point (SG4) H est stable par inversion donc x~! appartient aussi & H.
1

D’apres le point (sG3) H stable par la loi * donc il contient aussi z * 27" = e.

(G4) D’apres le point (SG4) tout élément de H admet un symétrique dans H, c’est son
symétrique dans G.

Ces quatre propriétés montrent que le couple (H,*) est un groupe. O

Méthode |

e Pour vérifier quun couple (G, *) est un groupe, on peut démontrer que c’est un
sous-groupe d’un groupe plus gros (G, ).

e Pour démontrer qu’il est non-vide on montre qu’il contient I’élément neutre.

> Exercices 4, 5.

C. Morphismes

| Définition
Soit F et E' deux ensembles, * une loi de composition interne de E et * une loi de
composition interne de E'.

Un morphisme de (E, x) dans (E’, %) est une application f : E — E’ compatible avec
les lois de composition internes, i.e., telle que :

,_( Définitions ]
e Un homomorphisme est un morphisme.

e Un endomorphisme est un morphisme de (£, %) dans lui-méme.

e Un isomorphisme est un morphisme bijectif.

e Un automorphisme est un endomorphisme bijectif.
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Chapitre B6. Structures algébriques IT. Groupes

Exemple 4.
e L’application R — R est un morphisme de (R, +) dans (R, x).
r — e*
« L’application R} — R est un isomorphisme de (]R”_‘H ><) dans (R, +).
r — Inx

Proposition )

La composée de deux morphismes est un morphisme.

Démonstration. Soit f: (E,*) — (E',*') et g: (F',*") — (E”, ") deux morphismes.
Alors :

Donc g o f est un morphisme. U

/_[ Proposition )

La réciproque d’un isomorphisme est un isomorphisme.
-

Démonstration.
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Chapitre B6. Structures algébriques IT. Groupes

Définition

Un morphisme de groupes est un morphisme d’un groupe vers un autre, ¢.e., un mor-
phisme de (G, %) dans (G', %) ou (G, *) et (G',*") sont deux groupes.

Exemple 5.

» L’application R} — R est un isomorphisme de groupes de (]R*Jr, x) dans (R, +).
x — Inx

o L’application R — C* est un morphisme de groupes de (R, +) dans (C*, x).

0 —> e
_| Cadre

Dans toute la suite on note (G, x) et (G',*') deux groupes, et e, € leurs éléments
neutres respectifs.

/_( Proposition ]

Soit f: (G,*) — (G',+") un morphisme de groupes. Alors :
(1) fe) = €.

(ii) Pour tout x € G :  f(x™!) = f(z)™!

(#ii) Pour tout x € G et tout n € Z :  f(a™) = (f(x))"

Démonstration.

(#i) On démontre la propriété pour tout n € IN* par récurrence, puis pour n = 0 grace au
1), et pour tout n € Z_ grace au (12/), car r ~ est l'inverse de x".
/), et tout Z._ gra 7 ™ est 1'i de z" 0

Exemple 5 (suite). Dans le cas du logarithme, ces propriétés s’écrivent :

Inl=0 VzreR} ln(%):—lnx V(z,n) e RL xZ In(2") =nlnz

> Exercice 6.
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D. Noyau et image

Proposition ]

Soit f : G — G’ un morphisme de groupes.
e Si H est un sous-groupe de G alors f(H) est un sous-groupe de G'.

« Si H' est un sous-groupe de G’ alors f~}(H’) est un sous-groupe de G.

Démonstration. Soit H un sous-groupe de G. On vérifie les quatre points de définition
d’un sous groupe.

(sG1) f(H) est inclus dans G', car H C G et f va de G dans G'.

(SG2) Comme H est un sous-groupe de G alors il contient e, donc f(H) contient f(e) = €/,
ie., e € f(H).

(sGs) Soit 2’ et ' deux éléments de f(H). Alors il existe x et y dans H tels que 2’ = f(z)
et y' = f(y).
Comme H est un sous-groupe de G alors il est stable par x donc x xy € H.
Or f(z) # f(y) = f(xxy) donc f(x) « f(y) € f(H), puis 2" +"y" € [(H).
Ceci montre que f(H) est stable par .

(sG4) Soit 2’ un élément de f(H). Alors il existe = € H tel que 2’ = f(x).

Comme H est un sous-groupe de G alors il est stable par passage a l'inverse, donc

r~' € H. Ainsi f(z7') € f(H). Or f(z7') = f(z)~!, donc (z/)~' € f(H).
Ceci montre que f(H) est stable par passage a l'inverse.

Les quatre points ci-dessus montrent que f(H) est un sous-groupe de G'.

Soit maintenant H’ un sous-groupe de G'.

(sa1) Comme f~YH')={xe€ G| f(x) € H'} alors f~}(H') CG.

(8Gg) Comme H' est un sous-groupe de G’ alors il contient son élément neutre e’
Comme f(e) =€ alors e € f~1(H').

(sG3) Soit z et y deux éléments de f~'(H'). Alors f(x) et f(y) appartiennent a H’.
Comme H' est un sous-groupe de G’ alors il est stable par " donc f(x)*' f(y) € H'.

Comme f est un morphisme de groupes alors f(z) " f(y) = f(z*y), donc f(xxy) €
H', ce qui montre que x xy € f~1(H').

Ainsi f~'(H') est stable par *.
(sG4) Soit z un élément de f~1(H’). Alors f(z) € H'.

Comme H’ est un sous-groupe de G’ alors il est stable par passage a l'inverse,
donc f(z)™* € H'. Or f(z)™' = f(x7!) donc f(z~!) € H’, ce qui montre que
r~t e fTY(H'), et donc f~1(H') est stable par passage a l'inverse.

Les quatre points ci-dessus montrent que f~'(H’) est un sous-groupe de G. U
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Chapitre B6. Structures algébriques IT. Groupes

Exemples. On sait que {e} est un sous-groupe de G et G’ est un sous-groupe de G'. Or :

f({e}) = UG =

Ce sont bien des sous-groupes respectivement de G’ et de G.

[ Définitions )
Soit f : G — G’ un morphisme de groupes.

On appelle image de f et on note im f 1’ensemble :

On appelle noyau de f et on note ker f ’ensemble :

(_[ Proposition ]

L’image de f est un sous-groupe de G’, le noyau de f est un sous-groupe de G.

Remarque. Caractérisation des éléments de I'image et du noyau.

Exemple 5 (suite). Déterminer le noyau et I'image de f: (R,+) — (C*, x)
0 — et

Théoréme

Soit f : G — G’ un morphisme de groupes. Alors :
(i) f est surjectif si et seulement si im f = G'.
(ii) f est injectif si et seulement si ker f = {e}.

Démonstration.

(i) Par définition le morphisme f est surjectif si et seulement si :
Vile G JreG  f(x)=14.

Ceci signifie exactement G’ C im f, donc im f = G’ car Uinclusion réciproque est
immédiate.
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Chapitre B6. Structures algébriques III. Anneaux et corps

(i)

> Exercice 6 (suite).

III. Anneaux et corps

A. Anneaux

_ | Définition

Un anneau (A, +, X) est un ensemble A muni de deux lois de composition internes +
et x telles que :

(A1) (A, +) est un groupe abélien.

(A2) La loi x est associative.

(A3) A possede un élément neutre pour x.

(A4) La loi x est distributive par rapport a la loi +.

Un anneau commutatif est un anneau dans lequel :

(A5) La loi x est commutative.

Remarques.

e On omet souvent de noter le signe x : xy = x X y.

e On note 04 I'élément neutre pour la loi + de A. On lappelle élément nul de A.
e On note 1,4 I’élément neutre pour la loi x de A. On I'appelle unité de A.

e On appelle inverse d’un élément x de A l'inverse de z pour la loi x.

Les éléments d’un anneau admettent tous un opposé mais pas tous un inverse.
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Exemples.
e (Z,+,%), (Q,+, %), (R,+, x) et (C,+, x) sont des anneaux. Tous sont commutatifs.
On remarque que 2 n’a pas d’inverse dans Z.

* (R?,+, x) est un anneau commutatif, muni des lois :

Y((w,9), (@ y) € R)*  (wy)+(@y) = (z+ay+y)
(z,y) x («,y) = (za',yy)

On vérifie que tous les axiomes sont satisfaits.

Les éléments neutres sont (0,0) et (1,1).

L’opposé de (z,y) est —(x,y) = (—x, —y).

Le couple (z,y) est inversible si et seulement si x et y sont non-nuls, son inverse est
alors (z,y)' = (1, y ).

Démontrons par exemple la distributivité. Soit v = (z,y), v = (2, ') et w = (2", y")
trois éléments de R?. Alors :

[

(z+2,y+y) x (2", y")

((x+ 22", (y+y")y")

— (xxll _'_ xlx//’yy// + y/y//)
( //i
(

xl_/l?yy//) + (xlxl/7yy )

Comme la loi x est commutative, la distributivité dans I'autre sens est aussi vérifiée.

¢ Soit X un ensemble quelconque et A = F(X, R). On munit A des lois + et x suivantes :
Si f et g sont deux éléments de A, alors f + g et f x g sont les fonctions définies par :

veeX  (f+9)@)=flz)+glx) et (fxg)(r)=f()g(z)

Alors (A, +, X) est un anneau, il est commutatif.
L’élément nul est la fonction nulle, i.e., la fonction constante égale a 0, et I'unité est
la fonction constante égale a 1.

o L’ensemble RYN des suites indexées par IN muni de 'addition et de la multiplication
usuelles est un anneau.
L’élément nul est la suite nulle, I'unité est la suite constante égale a 1.

e L’ensemble A, (K) muni de I’addition et de la multiplication matricielles est un anneau.
Il n’est pas commutatif.
L’élément nul est la matrice nulle 0,,, I'unité est la matrice identité I,,.

e L’ensemble K[X] des polynémes a coefficients dans K est un anneau commutatif.

> Exercice 7.
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B. Propriétés

Soit (A, +, X) un anneau.

Proposition ]

Pourtout x € A: 0axx=04=2x04 (04 est dit élément absorbant). }

Démonstration.

Remarque. Dans un anneau on peut avoir xy = 04 alors que ni « ni y n’est nul.
En d’autres termes I'implication

(=04 ou y=04) = ay=04

n’est pas une équivalence.

Définition

Un anneau A est dit intégre s’il est commutatif et :

Exemples.

o 7, Q, R, C sont des anneaux integres.

+ (R?,+, x) nest pas intégre. En effet (1,0) et (0,1) ne sont pas nuls, alors que leur
produit est nul.

e L’anneau (]R]N, +, x) des suites réelles n’est pas integre.

o (M,(K),+, x) n’est pas intégre car non seulement il n’est pas commutatif, mais en
plus il existe des matrices non-nulles dont le produit est nul.

> Exercice 8.

ﬁ[ Propositions ]

e (Formule du bindéme de Newton) Soit a et b deux éléments de A tels que ab = ba
(i.e., a et b commutent). Alors pour tout n € IN :

n

(a+b)"=>" (Z)akb"k

k=0
e Soit a et b deux éléments de A tels que ab = ba. Alors pour tout n € IN :

n—1

at —p" = (a — b)<an71 + an72b+ cee aban + bn71> — (a _ b)zanflfkbk
k=0

B. Gonard 15



Chapitre B6. Structures algébriques III. Anneaux et corps

_| Notation

Soit (A,+, X) un anneau. On note A* 'ensemble des éléments inversibles de A, i.e.,
des éléments inversibles pour la loi x.

_[ Proposition - Définition |

Le couple (A%, x) est un groupe, appelé groupe des inversibles de A.

Démonstration. On vérifie les quatre points de la définition d’un groupe.

(G1) Le produit de deux éléments inversibles est inversible, donc A* est stable par la loi
x. Ainsi la loi x de A* est induite par celle de A. C’est donc une loi de composition
interne.

(G2) La loi x d’un anneau est associative donc la loi x de A* est associative.

(G3) L’anneau A contient un élément neutre pour la loi x. Cet élément est inversible
(d’inverse lui-méme) donc il appartient a A*. Ainsi A* possede un élément neutre
pour sa loi x.

(G4) Si z appartient & A* alors x est inversible. Son inverse #~! est inversible d’inverse ,
ce qui montre que ! appartient a A*.
Ainsi tout élément de A* possede un inverse dans A*.

Tout ceci montre que (A*, x) est un groupe. |
Exemples.
» Le groupe des inversible de 'anneau (R, +, x) est (R*, x).
De méme pour C et Q.
» Le groupe des inversibles de (7, +, x) est ({£1}, x).
Il est incorrect de noter Z* pour Z \ {0}.
+ Le groupe des inversible de U, (K) est GL,(IK), appelé n®™¢ groupe linéaire de K.

C. Corps

Définition

Un corps (K, +, X) est un anneau commutatif non réduit a 0 dans lequel tout élément
non-nul est inversible.

Remarques.

e Un anneau commutatif K" non-nul est donc un corps si et seulement si : K* = K\ {0}
e Si z est un élément non-nul de K alors on note % =1 et d=yx %
Exemples.

e Q, R et C sont des corps.

e 7 n’est pas un corps, par exemple car 2 n’est pas inversible dans Z.

» L’ensemble des polyndémes R[X] n’est pas un corps.

En effet ses éléments inversibles sont les polynomes non-nuls de degré 0.

16 B. Gonard



Chapitre B6. Structures algébriques III. Anneaux et corps

/_[ Proposition ]

Un corps est integre.

Démonstration.

D. Sous-anneaux

| Définition
Soit A un anneau. Un ensemble B est un sous-anneau de A si :
(sA1) (B,+) est un sous-groupe de (A, +).
(SA3) 14 appartient a B.
(sA3) B est stable par x.

Propositions ]

¢ Si B est un sous-anneau de A alors B est un anneau.

* Si B est une partie de A contenant 14, stable par +, X, et passage a I’'opposé alors
B est un sous-anneau de A.

Exemples.

e 7 est un sous-anneau de R.

e 9,(K), T,(K), 7, (K) sont des sous-anneaux de ., (IK).

e {04} est un sous-groupe de (A, +), il est stable par X, mais ce n’est pas un sous-anneau
de A, car il ne contient par 14.

> Exercice 9.
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Chapitre B6. Structures algébriques III. Anneaux et corps

E. Morphismes d’anneaux

Soit A et A’ deux anneaux.

On note de la méme fagon les additions et les multiplications de A et de A’, pour alléger
les notations.

| Définition
Un morphisme d’anneauz est une application f : A — A’ vérifiant :
(MA;)  V(a,b) € A2 fla+b) = f(a) + f(b)

(MAz)  V(a,b) € A2 f(ab) = f(a)f(D)

(MA3z)  f(la) = 1a

Remarques.

e On définit également les isomorphismes, endomorphismes et automorphismes d’an-
neaux.

e Un morphisme d’anneaux f : A — A’ est en particulier un morphisme de groupes de
(A, +) dans (A, +).

» Le noyau ker f = f71({04/}) et 'image im f = f(A) sont toujours définis.
L’image de f est un sous-anneau de A’ mais en général le noyau de f n’est pas un
sous-anneau de A. En effet il ne contient pas obligatoirement 1 4.

¢ On a toujours I'équivalence, pour un morphisme d’anneaux :

f injectif = ker f = {04}

18 B. Gonard
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