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Chapitre B7
Polynômes

Dans tout ce chapitre on note K pour R ou C.

I. Définitions

A. L’anneau K[X]

Définition
Soit X une indéterminée. Un polynôme à coefficients dans K est une somme

P = a0 + a1X + a2X
2 + · · · + anXn =

n∑
k=0

akXk

où n est un entier naturel et a0, a1, . . . , an sont des scalaires. On note aussi :

P =
+∞∑
k=0

akXk =
∑
k∈N

akXk

en gardant bien en tête qu’à partir d’un certain rang les ak sont tous nuls.

Proposition
Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux.∑

k∈N
akXk =

∑
k∈N

bkXk ⇐⇒ ∀k ∈ N ak = bk

Notation
On note K[X] l’ensemble des polynômes à coefficients dans K.

Définitions (Opérations usuelles)

Soit P = ∑
k akXk et Q = ∑

k bkXk deux polynômes. On définit les opérations :
• Addition : P + Q = ∑

k(ak + bk)Xk

• Multiplication : PQ = ∑
k ckXk avec :

• Multiplication par un scalaire : pour tout λ ∈ K λP = ∑
k(λak)Xk

• Composition : P ◦ Q = P (Q(X))
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Chapitre B7. Polynômes I. Définitions

Définitions
• Un polynôme est constant si tous ses termes ak sont nuls sauf éventuellement a0.

L’ensemble des polynômes constants est naturellement identifié à K, ce qui justifie
l’inclusion K ⊆ K[X].

• Le polynôme nul est le polynôme dont tous les coefficients sont nuls.
Il est noté 0 ou 0K[X].

Proposition
Le triplet (K[X], +, ×) est un anneau.
• Son élément nul est le polynôme nul.
• L’opposé du polynôme P =

∑
k

akXk est le polynôme −P =
∑

k

(−ak)Xk.

• L’élément unité est le polynôme constant égal à 1.
• Ses éléments inversibles sont les polynômes constants non-nuls : K[X]∗ = K∗.

B. Degré

Définitions
• Soit P = ∑

k akXk un polynôme non-nul. On appelle degré de P et on note deg P
le plus grand entier k tel que ak est non nul.

Si P est de degré n alors :

• Dans ce cas le coefficient an est appelé coefficient dominant de P .
• Si de plus an = 1 alors on dit que P est un polynôme unitaire.
• On convient que le polynôme nul est de degré −∞.

Notation
Pour tout n ∈ N on note Kn[X] l’ensemble des polynômes à coefficients dans K de
degré inférieur ou égal à n :

Exemples.

• K2[X] =

• K0[X] =

• Si n ⩽ m alors
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Chapitre B7. Polynômes I. Définitions

Proposition
Pour tous polynômes P et Q :

deg (P + Q) deg(PQ)

Si deg P > deg Q alors

deg (P + Q)

Remarque. On convient que n + (−∞) = −∞ et que (−∞) + (−∞) = −∞, ainsi la
propriété est valable également si l’un des deux polynômes P et Q est nul.
Démonstration. Si P ou Q est le polynôme nul la propriété se vérifie facilement.
Supposons que P et Q sont non-nuls. Soit n = deg P et m = deg Q. Quitte à intervertir
les deux polynômes on suppose que n ⩾ m. On note :

P =
n∑

k=0
akXk et Q =

n∑
k=0

bkXk

avec an ̸= 0, et si m < n alors bm+1 = bm+2 = · · · = bn = 0. Alors :

P + Q =
n∑

k=0
(ak + bk)Xk

donc le degré de P + Q est bien inférieur ou égal à n.
De plus :
• Si m est strictement inférieur à n alors le coefficient de degré n de P + Q est an, il est

non-nul, donc P + Q est de degré n.
• Si m = n alors le degré de P + Q peut être strictement inférieur à n.
Pour la multiplication on utilise la formule :

PQ =
n∑

i=0

m∑
j=0

aibjX
i+j

Si i ⩽ n et j ⩽ m alors i + j ⩽ n + m, donc ce polynôme est de degré inférieur ou égal à
m + n.
Si i + j = m + n, comme i ⩽ n et j ⩽ m alors i = n et j = n, donc le coefficient de Xm+n

est anbm, il est non-nul donc PQ est de degré m + n. □
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Proposition
L’anneau K[X] est intègre. Autrement dit, pour tous polynômes P et Q :

PQ = 0 =⇒ P = 0 ou Q = 0

Démonstration. On démontre la contraposée :

P ̸= 0 et Q ̸= 0 =⇒ PQ ̸= 0

En effet, si P et Q sont non-nuls alors ils sont de degrés positifs, et comme deg(PQ) =
deg P + deg Q alors PQ est de degré positif et donc PQ est non-nul. □

C. Spécialisation

Définition
Soit P un polynôme et α un scalaire (i.e., α ∈ K).
On note P (α) le scalaire obtenu en remplaçant X par α dans l’expression de P :

Si P =
n∑

k=0
akXk alors P (α) =

n∑
k=0

akαk

On dit que P (α) est la spécialisation ou l’évaluation de P en α.

Remarque. On peut noter P ou P (X) pour un polynôme P de K[X].
Par contre si α ∈ K alors P (α) ∈ K.

Proposition
La spécialisation est compatible avec l’addition, la multiplication par un scalaire et la
multiplication :

∀(P, Q) ∈ K[X]2 (P + Q)(α) = P (α) + Q(α)
∀P ∈ K[X] ∀λ ∈ K (λP )(α) = λ P (α)
∀(P, Q) ∈ K[X]2 (PQ)(α) = P (α)Q(α)

Définition
Une fonction polynomiale est une fonction de K dans K de la forme x 7→ P (x) où P
est un polynôme.

Remarque. On note K[x] l’ensemble des fonctions polynomiales de K dans K. C’est un
sous-anneau de F(K).
L’application K[X] −→ K[x]

P 7−→ (x 7→ P (x))
est un morphisme d’anneaux.
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Chapitre B7. Polynômes I. Définitions

D. Divisibilité

Définition
Si A, B deux polynômes. On dit que B divise A, et que A est un multiple de B s’il
existe un polynôme C tel que A = BC.

Notation
Si B divise A alors on note B | A.

Exemple 1.
(i) X − 4 divise X2 − 3X − 4

(ii) Pour tout n ∈ N : X − 2 divise Xn − 2n

(iii) X2 divise 5X6 + 7X5 − 3X3 + 2X2

(iv) 2X − 3 divise X − 3
2

(v) X3 − 3X2 + 6X + 7 ne divise pas 2X2 − X + 10.
Remarque. Si B divise A et A est non-nul alors deg B ⩽ deg A.

Propositions
• Si B divise A et A′ alors B divise (A + A′).
• Si C divise B et B divise A alors C divise A.
• Le polynôme nul est multiple de tous les polynômes, le polynôme unité divise tous

les polynômes.

Remarques.
• Si P est un polynôme et λ un scalaire non-nul alors P divise λP , et λP divise P , car

P = 1
λ
(λP ).

• La relation de divisibilité n’est pas une relation d’ordre sur K[X]. Elle est réflexive,
transitive, mais pas antisymétrique.
Par exemple X2+3 divise 2X2+6 et 2X2+6 divise X2+3 alors que ces deux polynômes
ne sont pas égaux.
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Définition
Deux polynômes P et Q sont dits associés si P divise Q et Q divise P .

Proposition

Deux polynômes P et Q sont associés si et seulement si il existe λ ∈ K∗ tel que Q = λP .

Démonstration. D’après la remarque précédente, s’il existe λ non-nul tel que Q = λP
alors P et Q sont associés.
Réciproquement, supposons que P et Q sont deux polynômes associés. Il exsite alors deux
polynômes A et B tels que Q = AP et P = BQ.
On en déduit P = BAP .
Si P est nul, comme Q = AP alors Q est nul. Il existe bien λ ∈ K∗ tel que Q = λP .
Si P est non-nul deg P = deg A + deg B + deg P , donc deg A = deg B = 0 car les degrés
sont positifs.
Les polynômes de degrés nuls sont les polynômes constants non-nuls, donc il existe λ ∈ K∗

tel que A = λ. Ainsi Q = λP avec λ scalaire non-nul. □

Théorème - Division euclidienne dans K [X]
Soit A et B deux polynômes de K[X] avec B non-nul. Alors il existe un unique couple
(Q, R) de polynômes tel que :
• A = BQ + R

• deg R < deg B
Les polynômes Q et R sont appelés respectivement quotient et reste de la division
euclidienne de A par B.

Démonstration de l’existence. On fixe le polynôme B et on note p son degré. Comme B
est non-nul alors p est un entier naturel. On considère la proposition :
Pn : Pour tout polynôme A de degré n il existe un couple (Q, R) de polynômes tels que
A = BQ + R et deg R < deg B.
On démontre par récurrence forte que la proposition Pn est vraie pour tout n ∈ N∪{−∞}.
Initialisation. La propriété P−∞ est vraie car si A = 0 alors il suffit de poser Q = R = 0 :
ceci donne bien A = BQ + R et deg R < deg B.
Hérédité. Démontrons que pour tout n ∈ N, si P−∞, P0, P1 . . .Pn−1 sont vraies, alors
Pn est vraie.
Soit n ∈ N. Supposons que les propriétés P−∞, P0, P1 . . .Pn−1 sont vraies. Soit A un
polynôme de degré n. On note

A =
n∑

k=0
akXk et B =

p∑
k=0

bkXk

avec an et bp non-nuls.
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Chapitre B7. Polynômes I. Définitions

Si n < p alors on pose Q = 0 et R = A, ce qui donne bien A = BQ + R et deg R < deg B.
Supposons maintenant que n ⩾ p. Soit Q1 = an

bp
Xn−p. Alors

Q1B = anXn + an

bp

bp−1X
n−1 + · · ·

donc A − Q1B est de degré strictement inférieur à n. Notons m ce degré.
On applique la proposition Pm, qui est supposée vraie par hypothèse de récurrence :
Il existe des polynômes Q2 et R tels que A−Q1B = Q2B+R et deg R < deg B. En posant
Q = Q1 + Q2 on obtient qu’il existe bien deux polynômes Q et R tels que A = BQ + R
et deg R < deg B.
Ceci démontre que la proposition Pn est vraie. L’hérédité est établie.
Conclusion. Par récurrence forte la propriété Pn est vraie pour tout n ∈ N ∪ {−∞}.
En d’autres termes, pour tout A ∈ K[X] il existe des polynômes Q et R satisfaisant les
conditions demandées.
Démonstration de l’unicité.

Méthode
On pose la division comme pour les entiers.

Exemple 2. Calcul de la division euclidienne de A par B où :

(i) A = X5 − X4 − X3 + 8X2 − 2 B = X2 − X + 2
(ii) A = 2X5 + 3X4 − 4X3 − X2 + 4X + 1 B = X3 + 2X2 − 1

▶▷ Exercice 1.
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E. Représentation informatique
On peut considérer qu’un polynôme à coefficients dans K est une suite finie de scalaires
(a0, a1, . . . , an), ou de façon équivalente une suite (a0, a1, . . .) nulle à partir d’un certain
rang.
On dit plutôt qu’une suite est presque nulle si elle est nulle sauf pour un nombre fini
d’indices.
Alors les éléments de K sont les suites (a0, 0, 0, . . .), l’indéterminée est X = (0, 1, 0, 0, . . .).
L’addition est définie par :

(a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1, . . .)

La multiplication est définie par :

(a0, a1, . . .) × (b0, b1, . . .) = (a0b0, a1b0 + a0b1, . . .)

= (c0, c1, . . .) avec ∀k ∈ N ck =
k∑

i=0
aibk−i

On vérifie que l’ensemble des suites presque nulles muni de ces deux opérations est un
anneau, et comme on a noté X = (0, 1, 0, . . .) alors on a exactement :

n∑
k=0

akXk = (a0, a1, . . . , an, 0, . . .)

On définit aussi la multiplication par un scalaire :

λ(a0, a1, . . .) = (λa0, λa1, . . .)

Cette notation est en fait une définition alternative des polynômes, qui explique la notion
d’indéterminée : c’est un objet différent des scalaires.
En Python on peut définir des suites de scalaires (de flottants en l’occurrence).
Par exemple le polynôme P = X3 − 5X2 + 7 est représenté par la liste P=[7, 0, -5, 1],
éventuellement avec des zéros à la suite, comme P=[7, 0, -5, 1, 0, 0].
Le coefficient ak est alors P[k].
On peut définir des fonctions de calcul de :
• Degré d’un polynôme
• Somme, produit de deux polynômes
• Produit d’un polynôme par un scalaire
• Spécialisation d’un polynôme en un scalaire
• Division euclidienne d’un polynôme non-nul (il suffit de suivre l’algorithme donné par

la démonstration de l’existence du couple (Q, R))
• PGCD de deux polynômes
• etc.
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II. Dérivation

A. Dérivée formelle

Définition

Soit P =
n∑

k=0
akXk un polynôme. On appelle polynôme dérivé de P et on note P ′ le

polynôme défini par :

Remarque. Si f est la fonction polynomiale de polynôme P , alors la fonction polynomiale
associée à P ′ est la dérivée de f au sens usuel. En conséquence la dérivation des polynômes
hérite des propriétés de la dérivation des fonctions :
Pour tous polynômes P et Q et tout scalaire λ :
• (P + Q)′ = P ′ + Q′

• (λP )′ = λP ′

• (PQ)′ = P ′Q + PQ′

• P ′ = Q′ ⇐⇒ ∃k ∈ K P = Q + k

Proposition

Pour tout polynôme P non constant : deg(P ′) = deg(P ) − 1

B. Dérivées k-èmes

Proposition
Soit P = Xn où n ∈ N. Alors pour tout k ∈ N :

P (k) =

Démonstration. On commence par démontrer par récurrence finie sur k que cette propriété
est vraie pour tout k ∈ {0, . . . , n}.
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Proposition - Formule de Leibniz
Soit A et B deux polynômes. Alors :

∀n ∈ N (AB)(n) =

Exemple. Premiers dérivés successifs du produit AB :

(AB)(0) = AB

(AB)(1) = A′B + AB′

(AB)(2) =

(AB)(3) =

Démonstration. On démontre cette formule par récurrence sur n, comme pour la formule
du binôme de Newton. □

▶▷ Exercice 2.
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Théorème - Formule de Taylor
Soit P un polynôme de degré n et a un scalaire. Alors :

Démonstration. Si P est le polynôme nul alors la formule s’écrit P = 0, elle est juste.
Pour les autres cas on note Pn la propriété : la formule de Taylor est vraie pour tout
polynôme de degré n.
On démontre par récurrence que cette propriété est vraie pour tout n ∈ N.
Initialisation. Si P est de degré nul alors P est constant. La formule s’écrit P = P (0)(a),
elle est exacte.
Hérédité. Supposons que pour un certain n ∈ N∗ la propriété Pn−1 est vraie, c’est-à-dire
que la formule est validée pour tout polynôme de degré n − 1.

On considère un polynôme P de degré n et on pose : Q =
n∑

k=0

P (k)(a)
k! (X − a)k

La dérivée de Q est :

De plus, comme P ′ est de degré n − 1 alors par hypothèse de récurrence la formule est
valide pour P ′, ce qui donne :

Comme P ′(k) = P (k+1) pour tout entier k alors Q′ = P ′.
Ceci implique qu’il existe une constante c ∈ K telle que Q = P + c. Or Q(a) = P (a), donc
c = 0 et la formule est valide pour P .
L’hérédité est démontrée.
Conclusion. Par récurrence, la formule de Taylor est vraie pour tout polynôme. □

Remarque. Pour tout polynôme P : P 0 = 1
Ceci montre que la spécialisation de (X − a)0 en a est égale à 1.
Exemple 3. Application de la formule pour P = X3 + 2X − 5 et a = 1.

▶▷ Exercice 3.
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III. Racines

A. Définition

Définition
Soit P un polynôme de K[X]. Une racine (ou un zéro) de P est un scalaire α tel que
P (α) = 0.

Exemples.
• Le polynôme X + 3 de K[X] a une racine : −3
• Le polynôme X2 + 1 de C[X] a deux racines : i et −i

• Le polynôme X2 + 1 de R[X] n’a pas de racine.
• Le polynôme 5 n’a pas de racine.
• Le polynôme nul a une infinité de racines : tous les éléments de K.

Théorème
Soit P un élément de K[X] et α un élément de K.
Alors α est racine de P si et seulement si (X − α) divise P .

Démonstration.

Exemple 4. Résoudre : 3x3 − 5x2 + 2 = 0

▶▷ Exercice 4.
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Corollaire
Soit P un polynôme et k ∈ N∗.

Si α1, . . . , αk sont k racines distinctes de P alors le polynôme
k∏

i=1
(X − αi) divise P .

Démonstration. On note Pk cette propriété et on démontre par récurrence qu’elle est vraie
pour tout k ∈ N∗

Initialisation. Le théorème précédent donne la propriété P1.
Hérédité. Supposons que pour un certain entier k ⩾ 2 la propriété Pk−1 est vraie, démon-
trons qu’alors la propriété Pk est vraie.
Soit α1, . . . , αk des racines distinctes de P . Alors α1, . . . , αk−1 sont des racines distinctes de
P , donc d’après la propriété Pk−1 (qui est vraie par hypothèse de récurrence) le polynôme∏k−1

i=1 (X − αi) divise P , i.e., il existe un polynôme Q tel que :

P = (X − α1)(X − α2) · · · (X − αk−1)Q

Mais αk est racine de P , donc en spécialisant en X = αk dans l’égalité ci-dessus on
obtient :

0 = (αk − α1) · · · (αk − αk−1)Q(αk)
Comme les αi sont tous distincts alors les αi − αk ne sont pas nuls. On en déduit que
Q(αk) = 0, donc αk est une racine de Q.
D’après le théorème ci-dessus il existe un polynôme Q1 tel que Q = (X − αk)Q1, ce qui
donne :

P = (X − α1) · · · (X − αk−1)(X − αk)Q1

On a donc démontré que la propriété Pk est vraie. L’hérédité est établie.
Conclusion. Par récurrence, la propriété Pk est vraie pour tout entier non-nul k. □

Corollaire
Soit n un entier naturel. Un polynôme de degré n possède au plus n racines distinctes.

Démonstration. Soit P un polynôme de degré n, et soit m racines distinctes α1, . . . , αm

de P . Alors d’après le corollaire précédent il existe un polynôme Q tel que :

P =
Ç

m∏
i=1

(X − αi)
å

Q

Comme P est de degré n ∈ N alors P est non-nul, puis Q est non-nul. On déduit de
l’égalité ci-dessus :

n = deg P = deg
Ç

m∏
i=1

(X − αi)
å

+ deg Q = m + deg Q

Le degré de Q est positif, donc n ⩾ m.
Ainsi P ne peut avoir plus de n racines distinctes. □
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Corollaires
Soit n un entier naturel.
(i) Soit P un polynôme de degré inférieur ou égal à n.

Si P possède n + 1 racines distinctes alors P = 0.
(ii) Soit P et Q deux polynômes de degrés inférieurs ou égaux à n. S’il existe n + 1

scalaires distincts α0, . . . , αn tels que pour tout i = 0, . . . , n on a P (αi) = Q(αi)
alors P = Q.

(iii) Soit f, g : K → K deux fonctions polynomiales de degrés inférieurs ou égaux à n.
Si f et g sont égales en au moins n + 1 scalaires distincts alors f et g sont égales.
En d’autres termes une fonction polynomiale de degré au plus n est uniquement
déterminée par n + 1 de ses valeurs.

Démonstration.
(i) On suppose que P est de degré au plus n et qu’il possède n + 1 racines.

Si P est non-nul alors il est de degré m avec 0 ⩽ m ⩽ n, donc il possède au plus n
racines, d’après le corollaire précédent.
Or P possède au moins n + 1 racines, donc il est nul.

(ii) On applique le point (i) au polynôme P − Q.
Ce polynôme est de degré au plus n, les αi en sont racines, donc il possède au moins
n + 1 racines, et donc il est nul. Ainsi P = Q.

(iii) Ce point est conséquence du précédent. □

Remarque.
Cette propriété signifie que l’application K[X] −→ K[x]

P 7−→
Å
K −→ K

x 7−→ P (x)

ã est injective.

Elle est surjective par définition d’une fonction polynomiale, donc elle est bijective.
On peut ajouter que c’est un isomorphisme d’anneau.
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B. Ordre de multiplicité d’une racine

Définition
Soit P un polynôme non-nul et α une racine de P .
L’ordre de multiplicité de α dans P est le plus grand entier k tel que (X − α)k divise
P .
De façon équivalente, c’est l’entier naturel m tel que (X − α)m divise P et (X − α)m+1

ne divise pas P .

Remarque. Il existe alors un polynôme Q tel que P = (X − α)mQ et Q(α) ̸= 0.
Exemple 5.
(i) Soit P = aX2 + bX + c un polynôme du second degré. Si son discriminant est non-

nul alors il possède deux racines de multiplicité 1, sinon il possède une racine de
multiplicité 2.

(ii) Quelles sont les racines de X3 − X2 − X + 1 et quelles sont leurs multiplicités ?
(iii) Quelles sont les racines de 4X28 − X26 et quelles sont leurs multiplicités ?

Théorème
Soit P un polynôme, α un scalaire, et m un entier naturel. Alors les propriétés suivantes
sont équivalentes :
(i) α est racine de P de multiplicité m.

(ii) α est racine de P , P ′, P ′′, . . . , P (m−1), mais pas de P (m).

Remarque. Un scalaire α est racine d’un polynôme P de multiplicité 0 si et seulement
si P (α) ̸= 0.
Exemple 6. Soit P = X4 + 2X3 − 12X2 − 40X − 32.
Chercher une racine évidente de P , déterminer son ordre de multiplicité et en déduire sa
factorisation.

▶▷ Exercice 5.
Exemple. Démonstration dans le cas où m = 3.
Démonstration du sens direct. Supposons que α est racine de P d’ordre de multiplicité
m. Ceci signifie qu’il existe un polynôme Q tel que :

P = (X − α)mQ et Q(α) ̸= 0

Notons A = (X − α)m. Les dérivés successifs de A sont :

∀p ∈ N A(p) =
®

m!
(m−p)!(X − α)m−p si 0 ⩽ p ⩽ m

0 si p > m

Comme P = AQ alors par application de la formule de Leibniz :

∀n ∈ N P (n) =
n∑

p=0

Å
n

p

ã
A(p)Q(n−p)

B. Gonard 15



Chapitre B7. Polynômes III. Racines

Démontrons que α est racine de P (0) . . . P (m−1).
Si 0 ⩽ n ⩽ m − 1 alors tout p allant de 0 à n vérifie p ⩽ m − 1, ce qui donne 1 ⩽ m − p
puis :

A(p) = m!
(m − p)!(X − α)m−p et A(p)(α) = 0

Ainsi
P (n)(α) =

n∑
p=0

Ç
n

p

å
A(p)(α)Q(n−p)(α) = 0

On a démontré que α est racine de P (n), ceci pour tout n compris entre 0 et m − 1.
Posons maintenant n = m. On a vu que si p est compris entre 0 et m−1 alors A(p)(α) = 0,
donc :

P (m)(α) = A(m)(α)Q(m−m)(α) = m!Q(α)
Or Q(α) ̸= 0 donc α n’est pas racine de P (m).

Démonstration du sens indirect.
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C. Relations entre coefficients et racines
Remarque. Soit P = anXn + · · · + a0 un polynôme de K[X], α1, . . . , αn ses racines,
éventuellement complexes, non obligatoirement distinctes. On sait alors que :

P = anXn + an−1X
n−1 + · · · + a1X + a0 = an(X − α1) · · · (X − αn) (†)

En développant le second terme et en identifiant on obtient l’expression des coefficients
de P en fonction de ses racines.
Exemple 7.

(i) Pour n = 2 on obtient :

(ii) Pour n = 3 on obtient :

Proposition (formules de Viète : somme et produit des racines)
Avec les notations de la remarque ci-dessus :

Démonstration. Il suffit de considérer l’égalité (†). □

Exemple 8. La somme des racines n-èmes de l’unité est nulle si n > 1, leur produit vaut
(−1)n−1.
Exemple 9. Résoudre les systèmes :

(i)
ß

x + y = 7
xy = 10 (ii)

ß
x + y = 2

x2 + y2 = 10
▶▷ Exercices 6, 7.

Proposition (cas général)
Avec les notations précédentes :

Démonstration. Ces formules proviennent du développement de l’égalité (†). □
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IV. Factorisation d’un polynôme

A. Polynômes scindés

Définition
Un polynôme P de K[X] est dit scindé s’il est produit de polynômes de K[X] du
premier degré.

Remarques.
• Un polynôme est donc scindé si et seulement si il peut s’écrire

P = λ(X − β1) · · · (X − βn)

avec n = deg P et λ, β1, . . . , βn éléments de K, les βi n’étant pas obligatoirement
distincts.

• Autre caractérisation : un polynôme de degré n est scindé si et seulement si il admet
n racines, comptées avec leurs multiplicités.

Exemple.
• Dans R[X] : X2 + 1 n’est pas scindé, X2 − 1 est scindé.
• Dans C[X] : X2 + 1 et X2 − 1 sont scindés.

B. Factorisation dans C[X]

Théorème fondamental de l’algèbre ou Théorème de d’Alembert-Gauss
Tout polynôme non constant de C[X] possède une racine.

Corollaire
Soit P un polynôme de degré n de C[X]. Alors il existe des complexes λ, β1, . . . , βn

tels que :
P = λ(X − β1) · · · (X − βn)

Remarque. En d’autres termes, tout polynôme de C[X] est scindé.
Démonstration. Admise. □

Remarque. On dit que C est algébriquement clos. Ce n’est pas le cas de R ni de Q.
Par exemple le polynôme X2 + 1 n’a pas de racine dans Q ni dans R.
Le polynôme X2 − 2 a des racines dans R mais pas dans Q.

▶▷ Exercice 8.

Proposition
Soit P un polynôme de degré n. Soit α1, . . . , αr ses racines complexes, et m1, . . . , mr

leurs ordres de multiplicité respectifs.
Alors n = m1 + · · · + mr.

Démonstration. En effet il existe λ ∈ C tel que P = λ(X − α1)m1 · · · (X − αr)mr □
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C. Factorisation dans R[X]
Exemple 10. Le polynôme X4 +1 est-il scindé dans R[X] ? Est-il possible de le factoriser
dans R[X] ?
Remarque. Tout polynôme non constant de R[X] admet une racine, éventuellement
complexe. En effet, si P est élément de R[X], alors P est en particulier élément de C[X],
donc d’après le théorème de d’Alembert-Gauss il admet une racine dans C.

Proposition
Soit P un polynôme de R[X] et α une racine de P , éventuellement complexe.
Alors ᾱ est racine de P .

Démonstration.

Proposition (suite)

Si α est de multiplicité m alors ᾱ est de multiplicité m.

Démonstration. Par théorème, si α est racine de P d’ordre de multiplicité m alors :

P (α) = P ′(α) = · · · = P (m−1)(α) = 0 et P (m)(α) ̸= 0

Les P (n) sont réels donc par conjugaison :

P (ᾱ) = P ′(ᾱ) = · · · = P (m−1)(ᾱ) = 0 et P (m)(ᾱ) ̸= 0

Ceci montre bien que ᾱ est racine de P d’ordre de multiplicité m. □

Théorème
Tout polynôme de R[X] est produit de polynômes de degré 1 et de polynômes de degré
2 à discriminants strictement négatifs.

Démonstration. Soit P un polynôme de R[X]. Alors P est élément de C[X], donc il est
scindé dans C[X]. Parmi ses racines certaines sont réelles. Si une racine n’est pas réelle
alors son conjugué est racine également.
On peut noter l’ensemble des racines par

{α1, . . . , αr, ᾱ1, . . . , ᾱr, β1, . . . ,βs}

où r et s sont des entiers naturels, les αi sont des complexes non réels, et les βj sont des
réels.
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On note ensuite mi l’ordre de multiplicité de chaque αi. Alors mi est aussi l’ordre de
multiplicité de chaque ᾱi, d’après la proposition précédente.
On note de plus ℓj l’ordre de multiplicité de chaque βj, et enfin λ le coefficient dominant
de P , qui est réel car P est élément de R[X].
On obtient :

Pour i = 1 . . . r notons :
Qi = (X − αi)(X − ᾱi)

La décomposition de P s’écrit alors :

(⋆)

Or en développant Qi on obtient :

Ainsi Qi est un polynôme réel. Son discriminant est

∆i =

Il est strictement négatif car αi n’est pas réel.
La décomposition (⋆) est bien une décomposition en produit de polynômes de degré 1 et
polynômes de degré 2 à discriminants strictement négatifs. □

Corollaire
Tout polynôme de degré impair de R[X] possède une racine réelle.

Démonstration. Si P est un polynôme sans racine réelle, alors d’après le théorème ci-
dessus P est produit de polynômes de degré 2, donc son degré est pair. Ceci contredit
l’hypothèse, donc P possède une racine réelle. □

Autre démonstration. Notons P = anXn + · · · + a0 avec n impair et an non-nul. Alors :

P (x) ∼
(±∞)

anxn

On en déduit :

lim
x→+∞

P (x) = (sgn an)∞ et lim
x→−∞

P (x) = −(sgn an)∞

La fonction x 7→ P (x) est continue car elle est polynomiale, donc le théorème des valeurs
intermédiaires permet de conclure que P (R) = R, donc que 0 admet un antécédent par
cette fonction. Cet antécédent est racine de P , donc P admet une racine. □
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V. Arithmétique des polynômes

A. PGCD

Notation
Pour tout polynôme A on note D(A) l’ensemble de diviseurs de A.

Remarque. Soit A et B deux polynômes non tous les deux nuls.
Alors l’ensemble D(A) ∩ D(B) est non-vide car il contient le polynôme 1. L’ensemble R
des degrés des éléments de D(A) ∩ D(B) est une partie de N non-vide, car elle contient 0.
De plus tout diviseurs de A et de B est de degré inférieur aux degrés de A et de B s’ils
sont non-nuls, donc l’ensemble R est majoré. Il contient donc un plus grand élément r.
Cet entier r est le degré d’un élément de D(A) ∩ D(B).
Ceci justifie la définition ci-dessous.

Définition
Soit A et B deux polynômes non tous les deux nuls. Un PGCD de A et B est un
polynôme de degré maximal divisant A et B.

Remarque. Si D est un PGCD de A et de B alors tout polynôme associé à D, donc tout
polynôme λD pour λ ∈ K∗, est un PGCD de A et B.

Lemme
Soit A, B, Q, R, quatre polynômes vérifiant A = BQ + R. Alors :

D(A) ∩ D(B) = D(B) ∩ D(R)

Démonstration. Par double inclusion. □

Remarque. Étant donnés deux polynômes A et de B avec B non-nul on crée par récur-
rence finie une suite finie (Rk)0⩽k⩽n+1 de polynômes (avec n ∈ N) de la façon suivante :
R0 = A, R1 = B, puis pour k ⩾ 0 si Rk+1 est non-nul alors le polynôme Rk+2 est le reste
de la division euclidienne de Rk par Rk+1 :

Rk = Qk+1Rk+1 + Rk+2 deg Rk+2 < deg Rk+1

On a défini aussi la suite des quotients (Qk)1⩽k⩽n.
La suite (deg Rk)1⩽k est une suite d’entiers naturels strictement décroissante donc elle est
finie, ce qui montre que la suite (Rk)k⩾0 atteint le polynôme nul, auquel cas la construction
s’arrête, et on note n l’indice du dernier polynôme Rk non-nul.
Ce dernier polynôme non-nul Rn est un PGCD de A et de B, car :

D(A) ∩ D(B) = D(Rn) ∩ D(Rn+1) = D(Rn) ∩ D(0) = D(Rn)

Ceci montre que l’algorithme d’Euclide pour le calcul du PGCD est valide.
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Proposition
Si D1 et D2 sont deux PGCD de A et de B alors ils sont associés.
Il existe donc un unique PGCD de A et de B unitaire.

Démonstration. En effet, D1 et D2 sont deux diviseurs de degré maximal de Rn, donc ils
sont associés à Rn. Il s’écrivent tous les deux λRn pour un certain λ ∈ K∗.
Si le coefficient dominant de Rn est a alors a est non-nul. Le polynôme D = 1

a
Rn est alors

un PGCD unitaire de A et de B, et c’est le seul polynôme unitaire associé à Rn. □

Définition
Soit A et B deux polynômes non tous les deux nuls. Le PGCD de A et B est le
polynôme unitaire de degré maximal divisant A et B. On le note A ∧ B.
De plus on convient que 0 ∧ 0 = 0.

Exemple 11. (
10X3 + 10X2) ∧

(
2X2 + 4X + 2

)
=

Proposition
Le PGCD de A et B est le plus grand commun diviseur de A et B au sens de la
relation de divisibilité. C’est-à-dire que si un polynôme P divise A et B alors il divise
leur PGCD.

Démonstration. Ceci est conséquence de l’égalité D(A) ∩ D(B) = D(A ∧ B). □

▶▷ Exercice 9.

B. Relation de Bézout

Proposition
Soit A et B deux polynômes non tous les deux nuls. Alors il existe deux polynômes U
et V tels que AU + BV = A ∧ B.
Ces deux polynômes U et V sont appelés coefficients de Bézout du couple (A, B).

Démonstration. On utilise les Qk et les Rk de l’algorithme d’Euclide. □

▶▷ Exercice 10.

Définition
Deux polynômes non tous les deux nuls sont dits premiers entre eux si leur PGCD est
égal à 1.
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Théorème de Bézout
Deux polynômes A et B sont premiers entre eux si et seulement s’il existe deux poly-
nômes U et V tels que AU + BV = 1.

Démonstration. Le sens direct est conséquence de la propriété précédente. Pour le sens
indirect on remarque que si AU + BV = 1 alors tout diviseur de A et de B divise 1. □

Proposition (Lemme de Gauss)
Soit A, B, C trois polynômes. Si A divise BC et A est premier avec B alors A divise
C.

Démonstration. On utilise la relation de Bézout : il existe U et V tels que AU + BV = 1,
donc C = ACU + BCV . Si A divise BC alors A divise ACU + BCV = C. □

Proposition
Soit A et B deux polynômes et D leur PGCD. Alors il existe deux polynômes A1 et
B1 tel que :

A = DA1 B = DB1 A1 ∧ B1 = 1

Démonstration. Laissée en exercice. □

C. PPCM
Remarque. Soit A et B deux polynômes non-nuls.
Alors l’ensemble des multiples non-nuls de A et de B est non-vide car il contient le
polynôme AB. Donc L’ensemble des degrés de ses éléments est une partie de N non-vide.
Elle admet donc un minimum.
Ainsi il existe un polynôme non-nul de degré minimal multiple de A et de B.

Définition
Soit A et B deux polynômes non-nuls. Un PPCM de A et B est un multiple non-nul
de A et B de degré minimal.

Remarque. Si M est un PPCM de A et de B alors tout polynôme associé à M , donc
tout polynôme λM pour λ ∈ K∗, est un PPCM de A et B.
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Proposition
Un PPCM de A et B est un plus petit commun multiple de A et B au sens de la
divisibilité, c’est-à-dire que si un polynôme P est un multiple de A et B alors P est
un multiple de tous leurs PPCM.

Démonstration. Soit M un PPCM de A et B. Soit P un multiple de A et B. Comme
M est non-nul alors par division euclidienne il existe deux polynômes Q et R tels que
P = QM + R avec deg R < deg M .
Comme P et M sont multiples de A et B alors R est multiple de A et B. Comme son
degré est strictement inférieur à celui de M qui est un multiple de A et B non-nul de
degré minimal alors R est nul.
Ainsi M divise P . □

Proposition
Si M1 et M2 sont deux PPCM de A et B alors ils sont associés.
Il existe donc un unique PPCM de A et de B unitaire.

Démonstration. En effet, M1 et M2 sont deux PPCM de A et B donc ils sont multiples
l’un de l’autre d’après la propriété précédente, et ils sont donc associés. □

Définition
Soit A et B deux polynômes non-nuls. Le PPCM de A et B est le polynôme non-nul
unitaire de degré minimal multiple de A et B. On le note A ∨ B.
De plus on convient que A ∨ 0 = 0 pour tout polynôme A.

Remarques.
• On a démontré ci-dessus que :

• En conséquence :

Lemme
Soit A, B, C trois polynômes non-nuls avec C unitaire. Alors (AC)∨(BC) = (A∨B)C.

▶▷ Exercice 11.
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Proposition
Soit A et B deux polynômes non-nuls.
(i) Si A et B sont premiers entre eux alors A ∨ B est associé à AB.

(ii) Dans tous les cas (A ∧ B)(A ∨ B) est associé à AB.

Démonstration.
(i) Le produit AB est un multiple commun de A et B, donc il est multiple de leur PPCM.

Soit M = A ∨ B. Comme M est multiple de A alors il existe un polynôme Q tel que
M = AQ. Comme M est multiple de B alors B divise M = AQ, et comme A et B
sont premiers entre eux alors d’après le lemme de Gauss P divise Q. Il existe donc
un polynôme R tel que Q = BR. On a alors M = ABR, i.e., M est multiple de AB.
Ainsi AB et A ∨ B sont associés.

(ii) Notons D = A ∧ B. Alors il existe A1 et B1 premiers entre eux tels que A = DA1 et
B = DB1, et donc A ∨ B = (A1D) ∨ (B1D).
D’après le lemme précédent, comme D est unitaire alors A ∨ B = (A1 ∨ B1)D, puis
d’après le (i) comme A1 et B1 sont premiers entre eux alors il existe λ ∈ K∗ tel que
A ∨ B = λA1B1D.
Enfin (A ∨ B)(A ∧ B) = λA1B1D

2 = λAB. Comme λ est un scalaire non-nul alors
(A ∧ B)(A ∨ B) est associé à AB. □

D. Extension à un nombre fini de polynômes

Proposition
Soit A1, . . . , An une famille de n polynômes non tous nuls. Alors :
• Il existe un et un seul polynôme D unitaire de degré maximal divisant tous les Ai.
• De plus il existe des polynômes U1, . . . , Un tels que

A1U1 + · · · + AnUn = D

• Si un polynôme P divise tous les Ai alors P divise D.

Définition
Le polynôme D de la proposition ci-dessus est appelé PGCD des polynômes A1, . . . , An.
Il est noté :

D = A1 ∧ . . . ∧ An =
n∧

i=1
Ai

Remarque. Cas extrêmes :
1∧

i=1
Ai = A1

0∧
i=1

Ai = 0
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Définition
Soit n ∈ N∗.
• Les polynômes A1, . . . , An sont premiers entre eux dans leur ensemble si :

• Les polynômes A1, . . . , An sont premiers entre eux deux à deux si :

Remarque. Si les polynômes A1, . . . , An sont premiers entre eux deux à deux alors ils
sont premiers entre eux dans leur ensemble. La réciproque est fausse.

E. Polynômes irréductibles

Définition
Un polynôme P de K[X] est dit irréductible si :
• deg P ⩾ 1
• Les seuls diviseurs de P sont les scalaires non-nuls et les polynômes associés à P .

Remarque. Les polynômes irréductibles de K[X] jouent le rôle des nombres premiers
dans Z.
Exemple 12.
• Pour tout α ∈ K, le polynôme P = X − α est irréductible. En effet il est de degré 1, et

si on écrit P = AB alors A ou B est de degré 0, donc la seule écriture possible comme
produit est P = λ

( 1
λ
(X − α)

)
.

• Le polynôme X2 + 1 est irréductible dans R[X] mais pas dans C[X].
Les résultats de la partie IV permettent d’énoncer les propriétés suivantes :

Proposition
Les polynômes irréductible de C[X] sont les λ(X−α) avec α ∈ C et λ ∈ C∗, c’est-à-dire
les polynômes de degré 1.

Proposition
Les polynômes irréductibles de R[X] sont :
• Les λ(X − α) avec α ∈ R et λ ∈ R∗, c’est-à-dire les polynômes de degré 1.
• Les polynômes de degré 2 à discriminant strictement négatif.
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Théorème
Tout polynôme deK[X] se décompose comme produit d’un élément deK∗ et de facteurs
irréductibles unitaires de K[X].
Cette décomposition est unique à permutation des facteurs près.

Démonstration. Il reste à démontrer l’unicité. Pour ceci on remarque que l’ensemble des
racines complexe d’un polynôme est uniquement déterminé, de même que la multiplicité
des racines. Ceci justifie l’unicité de la décomposition dans C[X].
L’unicité dans R[X] en est conséquence. □

Proposition
Soit A et B deux polynômes de K[X]. Alors :
(i) A divise B si et seulement si les racines complexes de A sont racines de B avec

une multiplicité inférieure ou égale.
(ii) A et B sont premiers entre eux si et seulement s’ils n’ont pas de racine complexe

commune dans C.

Démonstration.
(i) On considère la décomposition en facteurs premiers de B dans C[X] :

B = λ(X − α1)m1 . . . (X − αr)mr

Avec r entier naturel, λ complexe non-nul, α1, . . . , αr complexes distincts, m1, . . . , mr

entiers naturels strictement positifs.
Si A divise B alors il existe un polynôme Q tel que B = AQ. Si α est une racine de A
alors A(α) = 0, donc B(α) = 0 et α est racine de B. De même les racines de Q sont
racines de B, donc A et Q admettent des décompositions dans C[X] de la forme :

A = µ(X − α1)k1 . . . (X − αr)kr et Q = ν(X − α1)ℓ1 . . . (X − αr)ℓr

où les ki et les ℓi sont des entiers naturels éventuellement nuls.
Comme B = AQ alors pour tout i = 1, . . . , r : mi = ki + ℓi donc ki ⩽ mi.

(ii) On démontre la négation de l’équivalence : A et B ne sont pas premiers entre eux si
et seulement s’ils ont au moins une racine complexe commune.
Notons D = A ∧ B. Alors A et B ne sont pas premiers entre eux si et seulement si
D est de degré au moins 1, donc si et seulement si D admet au moins une racine
complexe.
Si D admet une racine complexe α alors (X − α) divise D. Or D divise A et B donc
(X − α) divise A et B, donc α est racine commune de A et de B.
Réciproquement si A et B admettent une racine commune α alors (X − α) divise A
et B donc (X − α) divise D et ainsi D admet au moins une racine. □
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