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Chapitre B7
Polynomes

Dans tout ce chapitre on note K pour R ou C.

I. Définitions

A. L’anneau K[X]

_| Définition

Soit X une indéterminée. Un polynome a coeflicients dans KK est une somme

n
P=ay+au X +aX*+ - +a,X"= Zaka
k=0
ou n est un entier naturel et ag, a, ..., a, sont des scalaires. On note aussi :

“+o0o
P = Zaka = Z a,ka
k=0

kelN

en gardant bien en téte qu’a partir d’un certain rang les a, sont tous nuls.

ﬁ[ Proposition ]

Deux polyndémes sont égaux si et seulement si leurs coefficients sont égaux.

Xt => X" =  VEkeN aq =1

kelN k€N

_ | Notation

On note K[X]| I'ensemble des polynémes a coefficients dans K.

ﬁ[ Définitions (Opérations usuelles) ]

Soit P =Y, ar X* et Q = 3 bpX* deux polyndmes. On définit les opérations :
» Addition : P+ Q = Zk(ak -+ bk)Xk
 Multiplication : PQ = >, ¢ X* avec :

 Multiplication par un scalaire : pour tout A € K AP = >, (\ag) X*
e Composition : Po@Q = P(Q(X))
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Chapitre B7. Polynomes I. Définitions

[ Définitions )

e Un polyndéme est constant si tous ses termes a; sont nuls sauf éventuellement a.

L’ensemble des polynomes constants est naturellement identifié a K, ce qui justifie
I'inclusion K C K[X].
e Le polynome nul est le polynéme dont tous les coefficients sont nuls.

Il est noté 0 ou Ok[x)-

ﬁ( Proposition ]

Le triplet (IK[X], +, X) est un anneau.

e Son élément nul est le polynome nul.

e L’opposé du polynéme P = Z a, X" est le polynéme —P = Z(—ak)Xk.
k k

e [’élément unité est le polynome constant égal a 1.

¢ Ses éléments inversibles sont les polyndmes constants non-nuls :  K[X]* = K*.

B. Degré

ﬁ( Définitions ]
e Soit P = ¥, a; X" un polynéme non-nul. On appelle degré de P et on note deg P
le plus grand entier k£ tel que a; est non nul.

Si P est de degré n alors :

» Dans ce cas le coefficient a,, est appelé coefficient dominant de P.
e Si de plus a,, = 1 alors on dit que P est un polynéme unitaire.
e On convient que le polynome nul est de degré —oo.

_ | Notation

Pour tout n € IN on note K,[X] 'ensemble des polynémes a coefficients dans K de
degré inférieur ou égala n :

Exemples.

« Ky[X] =

. Ko[X] =

e Sin < malors
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Chapitre B7. Polynoémes I. Définitions

ﬁ[ Proposition ]

Pour tous polynomes P et @) : )
deg (P + Q) deg(PQ)
Si deg P > deg () alors
deg (P + Q)
Remarque. On convient que n + (—o0) = —c0 et que (—o0) + (—00) = —o0, ainsi la

propriété est valable également si I'un des deux polynomes P et () est nul.

Démonstration. Si P ou @ est le polyndéme nul la propriété se vérifie facilement.

Supposons que P et () sont non-nuls. Soit n = deg P et m = deg (). Quitte a intervertir
les deux polyndémes on suppose que n > m. On note :

P=>aX" et Q=) bX"
k=0 k=0

avec a, # 0, et si m < n alors b, 11 = b0 =---=10, =0. Alors :

P+Q= i(ak + b) X"

k=0
donc le degré de P + () est bien inférieur ou égal a n.
De plus :

e Si m est strictement inférieur a n alors le coefficient de degré n de P + @) est a,, il est
non-nul, donc P + () est de degré n.

e Sim =n alors le degré de P + () peut étre strictement inférieur a n.
Pour la multiplication on utilise la formule :

PQ = ZZaiijHj

i=05=0
Sii<netj<malorsi+ j <n+m, donc ce polynéme est de degré inférieur ou égal a

m —+n.

Sii+7=m-+n, commei <netj<malorsi=n et j=n, donc le coefficient de X" *"
est a,b,,, il est non-nul donc PQ est de degré m + n. O
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Chapitre B7. Polynomes I. Définitions

Proposition ]

L’anneau IK[X] est integre. Autrement dit, pour tous polynémes P et @ :

PQ=0 — P=0 ou Q=0

Démonstration. On démontre la contraposée :

P40 et Q#0 —  PQ#0

En effet, si P et () sont non-nuls alors ils sont de degrés positifs, et comme deg(PQ) =
deg P + deg @) alors P() est de degré positif et donc PQ est non-nul. 0

C. Spécialisation

_ | Définition

Soit P un polynome et a un scalaire (i.e., a € K).

On note P(«) le scalaire obtenu en remplagant X par a dans I’expression de P :

Si P=> X" alos  Pla) =) qaf
k=0

k=0

On dit que P(«) est la spécialisation ou I’ évaluation de P en «.

Remarque. On peut noter P ou P(X) pour un polynéme P de K[X].
Par contre si o € K alors P(«) € K.
ﬁ( Proposition ]

La spécialisation est compatible avec ’addition, la multiplication par un scalaire et la
multiplication :

V(P,Q) € K[X]? (P +Q)(a) = P(a) + Q(a)
VPeK[X] VAeK  (AP)(a)=\P(a)
V(P,Q) € K[X]? (PQ)(a) = P(a)Q()

| Définition
Une fonction polynomiale est une fonction de K dans K de la forme = — P(z) ou P
est un polynome.

Remarque. On note K[z] 'ensemble des fonctions polynomiales de K dans K. C’est un
sous-anneau de F(K).

L’application K[X] — K[z] est un morphisme d’anneaux.
P +— (z+— P(z))
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Chapitre B7. Polynoémes

I. Définitions

D. Divisibilité

_| Définition

existe un polynome C' tel que A = BC'.

Si A, B deux polynémes. On dit que B divise A, et que A est un multiple de B s’il

_ | Notation

Si B divise A alors on note B | A.

Exemple 1.
(i) X —4 divise X?—-3X —4
(i) Pour tout n € N: X —2 divise X" —2"
(iii) X*  divise 5XS+7X5 —3X3 4+ 2X?2
(iv) 2X —3 divise X —32
(v) X3 —3X?+6X +7 nedivise pas 2X% — X + 10.
Remarque. Si B divise A et A est non-nul alors deg B < deg A.

/_[ Propositions ]

e Si B divise A et A" alors B divise (A + A’).
e Si C divise B et B divise A alors C divise A.

les polynémes.

e Le polynome nul est multiple de tous les polynomes, le polynéme unité divise tous

Remarques.

e Si P est un polynome et A un scalaire non-nul alors P divise AP, et AP divise P, car

P=10P).

e La relation de divisibilité n’est pas une relation d’ordre sur K[X]. Elle est réflexive,

transitive, mais pas antisymétrique.

Par exemple X243 divise 2X?+6 et 2X? 46 divise X2+3 alors que ces deux polyndmes

ne sont pas égaux.
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Chapitre B7. Polynomes I. Définitions

_| Définition

Deux polyndémes P et () sont dits associés si P divise () et () divise P.

ﬁ[ Proposition ]

Deux polyndémes P et () sont associés si et seulement si il existe A € K* tel que QQ = AP.

Démonstration. D’apres la remarque précédente, s’il existe A non-nul tel que Q = AP
alors P et () sont associés.

Réciproquement, supposons que P et () sont deux polynomes associés. Il exsite alors deux
polynémes A et B tels que Q = AP et P = BQ.

On en déduit P = BAP.
Si P est nul, comme ) = AP alors () est nul. Il existe bien A € K* tel que Q = \P.

Si P est non-nul deg P = deg A + deg B + deg P, donc deg A = deg B = 0 car les degrés
sont positifs.

Les polynomes de degrés nuls sont les polynomes constants non-nuls, donc il existe A € K*
tel que A = \. Ainsi () = AP avec A scalaire non-nul. O

/_( Théoréme - Division euclidienne dans K [X] ]

Soit A et B deux polynémes de IK[X] avec B non-nul. Alors il existe un unique couple
(@, R) de polyndmes tel que :

e A=BQ+R

e deg R < degB

Les polynomes () et R sont appelés respectivement quotient et reste de la division
euclidienne de A par B.

Démonstration de I'existence. On fixe le polynome B et on note p son degré. Comme B
est non-nul alors p est un entier naturel. On considere la proposition :

9%, : Pour tout polynome A de degré n il existe un couple (@, R) de polynomes tels que
A=BQ+ R et deg R < deg B.

On démontre par récurrence forte que la proposition 2, est vraie pour tout n € NU{—o0}.

Initialisation. La propriété % _, est vraie car si A = 0 alors il suffit de poser @ = R =0 :
ceci donne bien A = BQ + R et deg R < deg B.

Hérédité. Démontrons que pour tout n € IN, si 2, Py, P1...%,_1 sont vraies, alors
9,, est vraie.

Soit n € IN. Supposons que les propriétés & _,, Po, P1...%,, 1 sont vraies. Soit A un
polynome de degré n. On note

n p
A=Y X" e B=>bX"

k=0 k=0

avec a, et b, non-nuls.

6 B. Gonard



Chapitre B7. Polynomes I. Définitions

Sin < palors on pose Q =0 et R = A, ce qui donne bien A = BQ + R et deg R < deg B.

Supposons maintenant que n > p. Soit () = %—:X =P Alors

ap ne
QiB = a, X" + 3b, 1 X

p
donc A — Q)1 B est de degré strictement inférieur a n. Notons m ce degré.

On applique la proposition %,,, qui est supposée vraie par hypothese de récurrence :

Il existe des polynomes (05 et R tels que A— Q1B = Q2B+ R et deg R < deg B. En posant
Q = Q1 + Q2 on obtient qu’il existe bien deux polynémes Q et R tels que A = BQ + R
et deg R < deg B.

Ceci démontre que la proposition 2, est vraie. L’hérédité est établie.
Conclusion. Par récurrence forte la propriété 2, est vraie pour tout n € NU {—o0}.

En d’autres termes, pour tout A € IK[X] il existe des polynomes @ et R satisfaisant les
conditions demandées.

Démonstration de 'unicité

Méthode |
On pose la division comme pour les entiers. J’
&

Exemple 2. Calcul de la division euclidienne de A par B ou :

(i) A=X>— X4 - X3 4+8X2%2-2 B=X?-X+2
(ii) A=2X54+3X*—4X3 - X?24+4X +1 B=X34+2X2-1

Exercice 1.
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Chapitre B7. Polynomes I. Définitions

E. Représentation informatique

On peut considérer qu'un polyndéme a coefficients dans K est une suite finie de scalaires
(ag,as, . ..,a,), ou de fagon équivalente une suite (ag, as,...) nulle & partir d'un certain
rang.

On dit plutot qu’une suite est presque nulle si elle est nulle sauf pour un nombre fini
d’indices.

Alors les éléments de K sont les suites (ag, 0,0, ...), I'indéterminée est X = (0,1,0,0,...).

L’addition est définie par :
((lo,al, .. ) + (bo,bl, . ) = ((10 + bo,al + bl, .. )
La multiplication est définie par :

(CLQ, ai, .. ) X (bo, bl, .. ) = (aobo, a1b0 + aobl, .. )
k
= (co,c1,.-..) avec VkeIN ¢, = Zaibk_i
=0

On vérifie que 'ensemble des suites presque nulles muni de ces deux opérations est un
anneau, et comme on a noté X = (0,1,0,...) alors on a exactement :

n
Zaka = (ag,as,...,a,,0,...)
k=0

On définit aussi la multiplication par un scalaire :

)\(CL(], ay, .. ) = ()\Clo, )\al, .. )

Cette notation est en fait une définition alternative des polyndémes, qui explique la notion
d’indéterminée : c’est un objet différent des scalaires.

En Python on peut définir des suites de scalaires (de flottants en 1'occurrence).

Par exemple le polyndéme P = X3 —5X?2 4+ 7 est représenté par la liste P=[7, 0, -5, 11,
éventuellement avec des zéros a la suite, comme P=[7, 0, -5, 1, 0, 0].

Le coeflicient a; est alors P[k].

On peut définir des fonctions de calcul de :
e Degré d'un polynome

e Somme, produit de deux polyndémes

¢ Produit d’un polynéme par un scalaire

e Spécialisation d'un polyndéme en un scalaire

 Division euclidienne d’un polynéme non-nul (il suffit de suivre I’algorithme donné par
la démonstration de I'existence du couple (@, R))

* PGCD de deux polynomes
e etc.
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Chapitre B7. Polynomes II. Dérivation

II. Dérivation

A. Dérivée formelle

_| Définition

n

Soit P = ZakX ¥ un polynome. On appelle polynéme dérivé de P et on note P’ le
k=0

polynome défini par :

-
Remarque. Si f est la fonction polynomiale de polynéme P, alors la fonction polynomiale
associée a P’ est la dérivée de f au sens usuel. En conséquence la dérivation des polynomes
hérite des propriétés de la dérivation des fonctions :

Pour tous polyndémes P et () et tout scalaire A :
c (PHQ) =P +Q

e (AP) =\F

. (PQ) = PQ+PQ

e PP=Q <+— dkeK P=Q+k

Proposition ]
Pour tout polyndéme P non constant : deg(P’) = deg(P) — 1

B. Dérivées k-émes

/_[ Proposition ]
Soit P = X" ou n € IN. Alors pour tout k € IN :

P o

Démonstration. On commence par démontrer par récurrence finie sur k& que cette propriété
est vraie pour tout k € {0,...,n}.
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Chapitre B7. Polynomes 1. Dérivation

/_[ Proposition - Formule de Leibniz j

Soit A et B deux polynomes. Alors :

Vn € N (AB)™ =

Exemple. Premiers dérivés successifs du produit AB :

AB)Y = AB
AB)Y) = A'B+ AB
AB)® =

AB)®) =

Démonstration. On démontre cette formule par récurrence sur n, comme pour la formule
du binéme de Newton. O

> Exercice 2.
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Chapitre B7. Polynoémes IT. Dérivation

Théoréme - Formule de Taylor ]

Soit P un polynome de degré n et a un scalaire. Alors :

Démonstration. Si P est le polynéme nul alors la formule s’écrit P = 0, elle est juste.

Pour les autres cas on note %, la propriété : la formule de Taylor est vraie pour tout
polynome de degré n.

On démontre par récurrence que cette propriété est vraie pour tout n € IN.

Initialisation. Si P est de degré nul alors P est constant. La formule s’écrit P = P (a),
elle est exacte.

Hérédité. Supposons que pour un certain n € IN* la propriété %2,,_; est vraie, c’est-a-dire
que la formule est validée pour tout polynéme de degré n — 1.

n P (g
k'( )(X_a)k

On considere un polynéme P de degré n et on pose : @ =
k=0

La dérivée de @) est :

De plus, comme P’ est de degré n — 1 alors par hypotheése de récurrence la formule est
valide pour P’, ce qui donne :

Comme P'®) = P+ pour tout entier k alors Q' = P'.

Ceci implique qu’il existe une constante ¢ € KK telle que @ = P+¢. Or Q(a) = P(a), donc
c =0 et la formule est valide pour P.

L’hérédité est démontrée.
Conclusion. Par récurrence, la formule de Taylor est vraie pour tout polynéme. 0
Remarque. Pour tout polynéme P: P°=1

Ceci montre que la spécialisation de (X — a)? en a est égale a 1.

Exemple 3. Application de la formule pour P = X3 +2X —5et a = 1.

Exercice 3.
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Chapitre B7. Polynomes ITI. Racines

III. Racines

A. Définition

Définition
Soit P un polynéme de K[X]. Une racine (ou un zéro) de P est un scalaire « tel que
P(a) =0.
Exemples.
e Le polynoéme X + 3 de K[X] a une racine : —3

 Le polynome X? + 1 de C[X] a deux racines : i et —i

+ Le polynome X2 + 1 de R[X] n’a pas de racine.

e Le polynéme 5 n’a pas de racine.

e Le polynome nul a une infinité de racines : tous les éléments de K.

| Théoréme
Soit P un élément de K[X] et o un élément de K.
Alors « est racine de P si et seulement si (X — «) divise P.

-

Démonstration.

Exemple 4. Résoudre : 323 — 522 +2 =0

> Exercice 4.
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Chapitre B7. Polynoémes III. Racines

Corollaire

Soit P un polynéme et k € IN*.
k

Si aq,...,q sont k racines distinctes de P alors le polynome H(X — ;) divise P.
i=1

Démonstration. On note %9}, cette propriété et on démontre par récurrence qu’elle est vraie
pour tout k € IN*

Initialisation. Le théoréeme précédent donne la propriété ;.

Hérédité. Supposons que pour un certain entier k£ > 2 la propriété %9;_; est vraie, démon-
trons qu’alors la propriété %, est vraie.

Soit a, . . ., ay, des racines distinctes de P. Alors oy, . .., ag_1 sont des racines distinctes de
P, donc d’apres la propriété % (qui est vraie par hypothéese de récurrence) le polynéme

MU(X — o) divise P, i.e., il existe un polynéme Q tel que :

P=(X—-a)(X —ag) (X —ap_1)Q

Mais a4 est racine de P, donc en spécialisant en X = «; dans 1'égalité ci-dessus on
obtient :

0= (o — 1) (g —ap1)Q(ay)

Comme les «; sont tous distincts alors les «; — ay ne sont pas nuls. On en déduit que
Q(ax) = 0, donc ay, est une racine de Q.

D’apres le théoreme ci-dessus il existe un polynéome Qi tel que Q = (X — a;)Q1, ce qui
donne :

P=(X—-ay) (X —ap1)(X — )@

On a donc démontré que la propriété 9, est vraie. L’hérédité est établie.

Conclusion. Par récurrence, la propriété 9, est vraie pour tout entier non-nul k. O
Corollaire

Soit n un entier naturel. Un polynéme de degré n possede au plus n racines distinctes}

Démonstration. Soit P un polynéme de degré n, et soit m racines distinctes aq, ..., ay,

de P. Alors d’apres le corollaire précédent il existe un polynéme @) tel que :
i=1

Comme P est de degré n € N alors P est non-nul, puis ) est non-nul. On déduit de
I’égalité ci-dessus :

m

n = deg P = deg <H(X - ai)> +deg@ =m + deg @
i=1

Le degré de @ est positif, donc n > m.

Ainsi P ne peut avoir plus de n racines distinctes. 0
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Chapitre B7. Polynomes III. Racines

ﬁ( Corollaires )
Soit n un entier naturel.
(i) Soit P un polynéme de degré inférieur ou égal a n.
Si P possede n + 1 racines distinctes alors P = 0.

(77) Soit P et @) deux polynomes de degrés inférieurs ou égaux a n. S’il existe n + 1

scalaires distincts ay, . .., a, tels que pour tout i = 0,...,n on a P(a;) = Q(ay)
alors P = ().

(1i7) Soit f, g : K — K deux fonctions polynomiales de degrés inférieurs ou égaux a n.
Si f et g sont égales en au moins n + 1 scalaires distincts alors f et g sont égales.

En d’autres termes une fonction polynomiale de degré au plus n est uniquement
déterminée par n + 1 de ses valeurs.

Démonstration.

(i) On suppose que P est de degré au plus n et qu’il possede n + 1 racines.

Si P est non-nul alors il est de degré m avec 0 < m < n, donc il possede au plus n
racines, d’apres le corollaire précédent.

Or P possede au moins n + 1 racines, donc il est nul.
(77) On applique le point (i) au polynéme P — Q).

Ce polynome est de degré au plus n, les «; en sont racines, donc il possede au moins
n + 1 racines, et donc il est nul. Ainsi P = Q.

(7ii) Ce point est conséquence du précédent. O
Remarque.
Cette propriété signifie que I'application K[X] — Klz] est injective.
<]K — K >
P —
x — P(x)

Elle est surjective par définition d'une fonction polynomiale, donc elle est bijective.

On peut ajouter que c’est un isomorphisme d’anneau.
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Chapitre B7. Polynoémes III. Racines

B. Ordre de multiplicité d’une racine

_| Définition

Soit P un polynéme non-nul et o une racine de P.

L’ ordre de multiplicité de a dans P est le plus grand entier k tel que (X — a)* divise
P.

De fagon équivalente, c’est I'entier naturel m tel que (X —a)™ divise P et (X — )™ !
ne divise pas P.

Remarque. 1l existe alors un polynéme @ tel que P = (X — a)™Q et Q(«) # 0.
Exemple 5.

(i) Soit P = aX?+ bX + ¢ un polynéme du second degré. Si son discriminant est non-
nul alors il possede deux racines de multiplicité 1, sinon il posséde une racine de
multiplicité 2.

(i) Quelles sont les racines de X? — X? — X + 1 et quelles sont leurs multiplicités ?

(iii) Quelles sont les racines de 4X2® — X?¢ et quelles sont leurs multiplicités ?

Théoreme
Soit. P un polynoéme, o un scalaire, et m un entier naturel. Alors les propriétés suivantes

sont équivalentes :
(i) a est racine de P de multiplicité m.

(ii) o est racine de P, P, P” ..., P(™=Y mais pas de P(™).

Remarque. Un scalaire « est racine d'un polynéome P de multiplicité 0 si et seulement
si P(a) # 0.

Exemple 6. Soit P = X* +2X3 — 12X?% — 40X — 32.

Chercher une racine évidente de P, déterminer son ordre de multiplicité et en déduire sa
factorisation.

Exercice 5.

Exemple. Démonstration dans le cas ou m = 3.

Démonstration du sens direct. Supposons que « est racine de P d’ordre de multiplicité
m. Ceci signifie qu’il existe un polynome @) tel que :

P=(X—-a)"Q et Qa)#0
Notons A = (X — «a)™. Les dérivés successifs de A sont :

e aw_ [ memX - si0<p<m
0 Sip>m

Comme P = AQ alors par application de la formule de Leibniz :

Vn e N pn — i<n>A(p)Q(np)

p=0 P

B. Gonard 15



Chapitre B7. Polynomes ITI. Racines

Démontrons que « est racine de PO ... ptm=1),

Si0<n<m—1alors tout p allant de 0 a n vérifie p < m — 1, ce qui donne 1 <m —p
puis :

AlP) — (X —a)™P ot A(p)(a) =0

Ainsi

P™(q) = Zn: (n> AP (0)Q" P (a) = 0

p=0 \P
On a démontré que « est racine de P™, ceci pour tout n compris entre 0 et m — 1.

Posons maintenant n = m. On a vu que si p est compris entre 0 et m —1 alors A(p)(a) =0,

donc :
P () = A" (a)Q" ™ (a) = m!Q(a)

Or Q(a) # 0 donc a n’est pas racine de P™.

Démonstration du/sens indirect.
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Chapitre B7. Polynomes ITI. Racines

C. Relations entre coefficients et racines

Remarque. Soit P = a,X™ + -+ + ap un polynéme de K[X], aq,...,q, ses racines,
éventuellement complexes, non obligatoirement distinctes. On sait alors que :
P=a,X"+a, 1 X" '+ +aX+a=a,(X—a) (X —a,) (1)

En développant le second terme et en identifiant on obtient 1’expression des coefficients
de P en fonction de ses racines.

Exemple 7.
(i) Pour n = 2 on obtient :
(i1) Pour n = 3 on obtient :

/_( Proposition (formules de Viéte : somme et produit des racines)

Avec les notations de la remarque ci-dessus :

.

Démonstration. Il suffit de considérer 1’égalité (7). O
Exemple 8. La somme des racines n-emes de 1'unité est nulle si n > 1, leur produit vaut
(=nnmt.
Exemple 9. Résoudre les systemes :

o[l w{amy
Exercices 6, 7.

/_[ Proposition (cas général) ]

Avec les notations précédentes :

Démonstration. Ces formules proviennent du développement de I’égalité (7). U
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IV. Factorisation d’un polynéme

A. Polynémes scindés

Définition

Un polynéme P de K[X] est dit scindé s'il est produit de polynomes de K[X] du
premier degré.

Remarques.
. s .. o
e Un polyndéme est donc scindé si et seulement si il peut s’écrire

P=XNX=p1)- (X = B)

avec n = deg P et A\, [1,...,0, €léments de K, les 3; n’étant pas obligatoirement
distincts.

e Autre caractérisation : un polynéme de degré n est scindé si et seulement si il admet
n racines, comptées avec leurs multiplicités.

Exemple.

e Dans R[X]: X?+ 1 n'est pas scindé, X? — 1 est scindé.

e Dans C[X]: X%2+1 et X?—1 sont scindés.

B. Factorisation dans C[X]

ﬁ( Théoreme fondamental de P’algebre ou Théoreme de d’Alembert-Gauss ]\

Tout polynéme non constant de C[X| posséde une racine.

_| Corollaire

Soit P un polynéme de degré n de C[X]. Alors il existe des complexes A, f1,..., 5,
tels que :

P=XX=p1) (X —Bn)

Remarque. En d’autres termes, tout polynéme de C[X] est scindé.

Démonstration. Admise. O

Remarque. On dit que C est algébriquement clos. Ce n’est pas le cas de R ni de Q.
Par exemple le polynome X? + 1 n’a pas de racine dans Q ni dans R.

Le polynéme X2 — 2 a des racines dans R mais pas dans Q.

Exercice 8.

Proposition ]

Soit P un polynéme de degré n. Soit aq, ..., a, ses racines complexes, et mq,..., m,
leurs ordres de multiplicité respectifs.
Alors n =mq + -+ +m,.

Démonstration. En effet il existe A € C tel que P = A\(X —ay)™ -+ (X — o)™ O
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C. Factorisation dans R[X]

Exemple 10. Le polynéme X*+1 est-il scindé dans R[X] ? Est-il possible de le factoriser
dans R[X]?

Remarque. Tout polynoéme non constant de R[X] admet une racine, éventuellement
complexe. En effet, si P est élément de R[X], alors P est en particulier élément de C[X],
donc d’apres le théoreme de d’Alembert-Gauss il admet une racine dans C.

Proposition ]

Soit P un polynéme de R[X] et « une racine de P, éventuellement complexe.
Alors « est racine de P.

Démonstration.

Proposition (suite) j

Si « est de multiplicité m alors & est de multiplicité m. }

Démonstration. Par théoreme, si o est racine de P d’ordre de multiplicité m alors :

Pla)=P(a)=--=P™V(a)=0 e  P™(a)#0
Les P™ sont réels donc par conjugaison :
Pl@)=Pla)=---=P™ V@) =0 e P™(@a)#0
Ceci montre bien que & est racine de P d’ordre de multiplicité m. O

Théoréme

Tout polynome de R[X] est produit de polynémes de degré 1 et de polynomes de degré
2 a discriminants strictement négatifs.

Démonstration. Soit P un polyndéme de R[X]. Alors P est élément de C[X], donc il est
scindé dans C[X]. Parmi ses racines certaines sont réelles. Si une racine n’est pas réelle
alors son conjugué est racine également.

On peut noter I’ensemble des racines par

{a17"'7a7'7&17‘"7&7'7617""/85}

ou r et s sont des entiers naturels, les a; sont des complexes non réels, et les 3; sont des
réels.
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On note ensuite m; 'ordre de multiplicité de chaque «;. Alors m; est aussi l'ordre de
multiplicité de chaque a;, d’apres la proposition précédente.

On note de plus ¢; 'ordre de multiplicité de chaque 3;, et enfin A le coefficient dominant
de P, qui est réel car P est élément de R[X].

On obtient :

Pour7=1...7r notons :
Qi = (X —a)(X — )

La décomposition de P s’écrit alors :
Or en développant @); on obtient :

Ainsi Q; est un polynoéme réel. Son discriminant est
Ai =

Il est strictement négatif car a; n’est pas réel.

La décomposition (x) est bien une décomposition en produit de polynémes de degré 1 et
polynomes de degré 2 a discriminants strictement négatifs. 0

Corollaire
Tout polyndéme de degré impair de R[X] possede une racine réelle.

Démonstration. Si P est un polynéme sans racine réelle, alors d’apres le théoreme ci-
dessus P est produit de polynomes de degré 2, donc son degré est pair. Ceci contredit
I’hypothese, donc P possede une racine réelle. 0]

Autre démonstration. Notons P = a, X" + - - - + ag avec n impair et a, non-nul. Alors :

P(z) ~ a,z"
()(ioo)

On en déduit :

xEIJPoo P(x) = (sgna,)oo et im P(z) = —(sgna,)oo
La fonction x — P(x) est continue car elle est polynomiale, donc le théoréme des valeurs
intermédiaires permet de conclure que P(R) = R, donc que 0 admet un antécédent par
cette fonction. Cet antécédent est racine de P, donc P admet une racine. O
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V. Arithmétique des polynémes
A.PGCD

Notation
Pour tout polynéme A on note 9(A) 'ensemble de diviseurs de A. ]

Remarque. Soit A et B deux polynomes non tous les deux nuls.

Alors I'ensemble 9(A) N9(B) est non-vide car il contient le polynéme 1. L’ensemble R
des degrés des éléments de D(A) NP (B) est une partie de IN non-vide, car elle contient 0.

De plus tout diviseurs de A et de B est de degré inférieur aux degrés de A et de B s’ils
sont non-nuls, donc ’ensemble R est majoré. Il contient donc un plus grand élément r.

Cet entier r est le degré d'un élément de D(A) N Y(B).

Ceci justifie la définition ci-dessous.

Définition

Soit A et B deux polynomes non tous les deux nuls. Un PGCD de A et B est un
polynome de degré maximal divisant A et B.

Remarque. Si D est un PGCD de A et de B alors tout polynéme associé a D, donc tout
polynéme AD pour \ € K*, est un PGCD de A et B.

Soit A, B, @), R, quatre polynomes vérifiant A = BQ + R. Alors :

9(A) ND(B) = D(B) ND(R)

Démonstration. Par double inclusion. O

Remarque. Etant donnés deux polynomes A et de B avec B non-nul on crée par récur-
rence finie une suite finie (Ry)o<k<nt+1 de polynomes (avec n € IN) de la fagon suivante :
Ry = A, Ry = B, puis pour k > 0 si Ry est non-nul alors le polynéme Ry o est le reste
de la division euclidienne de Ry par Ry.q :

Ry, = Qpi1Riy1 + Rigo deg Ry < deg Riq

On a défini aussi la suite des quotients (Qx)1<k<n-

La suite (deg Ry)1<k est une suite d’entiers naturels strictement décroissante donc elle est
finie, ce qui montre que la suite (Ry)x>0 atteint le polynéme nul, auquel cas la construction
s’arréte, et on note n l'indice du dernier polynéme Rj non-nul.

Ce dernier polynéme non-nul R,, est un PGCD de A et de B, car :
D(A)ND(B) = D(Rn) ND(Rpt1) = D(Rn) ND(0) = D(R,)

Ceci montre que l'algorithme d’Euclide pour le calcul du PGCD est valide.
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Proposition ]

Si Dy et Dy sont deux PGCD de A et de B alors ils sont associés.
Il existe donc un unique PGCD de A et de B unitaire.

Démonstration. En effet, Dy et Dy sont deux diviseurs de degré maximal de R,,, donc ils
sont associés a R,,. Il s’écrivent tous les deux AR,, pour un certain A € K*.

Si le coefficient dominant de R,, est a alors a est non-nul. Le polynéme D = %Rn est alors
un PGCD unitaire de A et de B, et c¢’est le seul polynéme unitaire associé a R,,. O

Définition

Soit A et B deux polyndémes non tous les deux nuls. Le PGCD de A et B est le
polyndéme unitaire de degré maximal divisant A et B. On le note A A B.

De plus on convient que 0 A 0 = 0.

Exemple 11.

(10X° + 10X%) A (2X7 +4X +2) =

ﬁ( Proposition ]

Le PGCD de A et B est le plus grand commun diviseur de A et B au sens de la
relation de divisibilité. C’est-a-dire que si un polynéome P divise A et B alors il divise
leur PGCD.

Démonstration. Ceci est conséquence de 'égalité D(A) ND(B) = D(A A B). O

Exercice 9.

B. Relation de Bézout

Proposition ]

Soit A et B deux polynémes non tous les deux nuls. Alors il existe deux polynémes U
et V tels que AU + BV = AN B.
Ces deux polynémes U et V sont appelés coefficients de Bézout du couple (A, B).

Démonstration. On utilise les Qi et les Ry de 'algorithme d’Euclide. O

Exercice 10.

Définition

Deux polynomes non tous les deux nuls sont dits premiers entre eux si leur PGCD est
égal a 1.
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Théoréme de Bézout )

Deux polyndémes A et B sont premiers entre eux si et seulement s’il existe deux poly-
nomes U et V tels que AU + BV = 1.

Démonstration. Le sens direct est conséquence de la propriété précédente. Pour le sens
indirect on remarque que si AU 4+ BV =1 alors tout diviseur de A et de B divise 1. [

ﬁ( Proposition (Lemme de Gauss) j

Soit A, B, C' trois polynomes. Si A divise BC' et A est premier avec B alors A divise
C.

J
Démonstration. On utilise la relation de Bézout : il existe U et V tels que AU + BV =1,
donc C'= ACU + BCV. Si A divise BC' alors A divise ACU + BCV = C. O

Proposition ]

Soit A et B deux polynomes et D leur PGCD. Alors il existe deux polynomes A; et
By tel que :
A= DA, B=DB AiNB =1

Démonstration. Laissée en exercice. O

C.PPCM

Remarque. Soit A et B deux polynémes non-nuls.

Alors I'ensemble des multiples non-nuls de A et de B est non-vide car il contient le
polynéme AB. Donc L’ensemble des degrés de ses éléments est une partie de IN non-vide.
Elle admet donc un minimum.

Ainsi il existe un polynéme non-nul de degré minimal multiple de A et de B.

Définition

Soit A et B deux polynémes non-nuls. Un PPCM de A et B est un multiple non-nul
de A et B de degré minimal.

Remarque. Si M est un PPCM de A et de B alors tout polynéme associé a M, donc
tout polynéome AM pour \ € K*, est un PPCM de A et B.
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Proposition ]

Un PPCM de A et B est un plus petit commun multiple de A et B au sens de la
divisibilité, c’est-a-dire que si un polynéome P est un multiple de A et B alors P est
un multiple de tous leurs PPCM.

Démonstration. Soit M un PPCM de A et B. Soit P un multiple de A et B. Comme
M est non-nul alors par division euclidienne il existe deux polynomes () et R tels que
P=QM + R avec deg R < deg M.

Comme P et M sont multiples de A et B alors R est multiple de A et B. Comme son
degré est strictement inférieur a celui de M qui est un multiple de A et B non-nul de
degré minimal alors R est nul.

Ainsi M divise P. O

Proposition ]

Si My et My sont deux PPCM de A et B alors ils sont associés.
Il existe donc un unique PPCM de A et de B unitaire.

Démonstration. En effet, M; et M, sont deux PPCM de A et B donc ils sont multiples
I'un de l'autre d’apres la propriété précédente, et ils sont donc associés. 0

Définition

Soit A et B deux polynémes non-nuls. Le PPCM de A et B est le polynéme non-nul
unitaire de degré minimal multiple de A et B. On le note AV B.

De plus on convient que A V 0 = 0 pour tout polynéme A.

Remarques.

e On a démontré ci-dessus que :

¢ En conséquence :

Lemme
Soit A, B, C trois polynémes non-nuls avec C' unitaire. Alors (AC)V(BC) = (AVB)C.

> Exercice 11.

24 B. Gonard



Chapitre B7. Polynoémes V. Arithmétique des polynomes

Proposition ]

Soit A et B deux polynomes non-nuls.
(i) Si A et B sont premiers entre eux alors A V B est associé a AB.

(77) Dans tous les cas (A A B)(AV B) est associé a AB.

Démonstration.

(1) Le produit AB est un multiple commun de A et B, donc il est multiple de leur PPCM.

Soit M = AV B. Comme M est multiple de A alors il existe un polynéme @ tel que
M = AQ. Comme M est multiple de B alors B divise M = AQ), et comme A et B
sont premiers entre eux alors d’apres le lemme de Gauss P divise (). Il existe donc
un polynome R tel que Q = BR. On a alors M = ABR, i.e., M est multiple de AB.

Ainsi AB et AV B sont associés.

(7i) Notons D = A A B. Alors il existe A; et By premiers entre eux tels que A = DA, et
B = DBy, et donc AV B = (A1D)V (BD).

D’apres le lemme précédent, comme D est unitaire alors AV B = (A, V By)D, puis
d’apres le (i) comme A; et B; sont premiers entre eux alors il existe A € IK* tel que
AV B =\MA1BD.

Enfin (AV B)(AA B) = M B;D? = MAB. Comme )\ est un scalaire non-nul alors
(AN B)(AV B) est associé a AB. O

D. Extension a un nombre fini de polynémes

/_[ Proposition ]

Soit Ay,..., A, une famille de n polynémes non tous nuls. Alors :
o Il existe un et un seul polyndéme D unitaire de degré maximal divisant tous les A;.

e De plus il existe des polynémes Uy, ..., U, tels que
AU +---+ AU, =D

e Si un polynoéme P divise tous les A; alors P divise D.

| Définition N
Le polynéme D de la proposition ci-dessus est appelé PGCD des polynémes A4, ..., A,.
Il est noté :

D=AN...NA, =N\ A

1 0
Remarque. Cas extrémes : N A=A NA=0
i=1

i=1
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_| Définition

Soit n € IN*.
e Les polyndmes Ay, ..., A, sont premiers entre eux dans leur ensemble si :
e Les polyndémes Ay,..., A, sont premiers entre eux deux a deux si :
Remarque. Si les polynémes Aq, ..., A, sont premiers entre eux deux a deux alors ils

sont premiers entre eux dans leur ensemble. La réciproque est fausse.

E. Polynémes irréductibles

| Définition
Un polynéme P de K[X] est dit irréductible si :
e degP > 1
* Les seuls diviseurs de P sont les scalaires non-nuls et les polynémes associés a P.

Remarque. Les polyndmes irréductibles de K[X] jouent le role des nombres premiers
dans Z.

Exemple 12.

e Pour tout a € K, le polynéome P = X — « est irréductible. En effet il est de degré 1, et
si on écrit P = AB alors A ou B est de degré 0, donc la seule écriture possible comme
produit est P = A(+(X — a)).

+ Le polynome X? + 1 est irréductible dans R[X] mais pas dans C[X].

Les résultats de la partie IV permettent d’énoncer les propriétés suivantes :

/_( Proposition ]

Les polyndmes irréductible de C[X] sont les A\(X —a) avec a € C et A € C*, c’est-a-dire
les polynomes de degré 1.

/_( Proposition ]
Les polyndmes irréductibles de R[X] sont :

e Les A(X — ) avec a € R et A € R*, c’est-a-dire les polynomes de degré 1.

* Les polyndmes de degré 2 a discriminant strictement négatif.
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Théoréme

Tout polynéme de K[X] se décompose comme produit d’un élément de IK* et de facteurs
irréductibles unitaires de IK[X].
Cette décomposition est unique a permutation des facteurs pres.

Démonstration. Il reste a démontrer I'unicité. Pour ceci on remarque que ’ensemble des
racines complexe d’un polynéme est uniquement déterminé, de méme que la multiplicité
des racines. Ceci justifie I'unicité de la décomposition dans C[X].

L’unicité dans R[X] en est conséquence. O

ﬁ( Proposition ]

Soit A et B deux polyndmes de K[X]. Alors :
(1) A divise B si et seulement si les racines complexes de A sont racines de B avec
une multiplicité inférieure ou égale.

(i) A et B sont premiers entre eux si et seulement s’ils n’ont pas de racine complexe
commune dans C.

Démonstration.

(1) On considere la décomposition en facteurs premiers de B dans C[X] :
B=XAX—-o)™ ... (X —a,)™
Avec r entier naturel, A complexe non-nul, a, ..., «, complexes distincts, mq,...,m,

entiers naturels strictement positifs.

Si A divise B alors il existe un polynome @ tel que B = A(Q). Si « est une racine de A
alors A(a) = 0, donc B(a) = 0 et « est racine de B. De méme les racines de @) sont
racines de B, donc A et (Q admettent des décompositions dans C[X] de la forme :

A=p(X —a) . (X =) et Q=v(X —a)"... (X —a)"

ou les k; et les ¢; sont des entiers naturels éventuellement nuls.
Comme B = AQ alors pour tout i = 1,...,r : m; = k; + ¢; donc k; < m;.

(77) On démontre la négation de 1’équivalence : A et B ne sont pas premiers entre eux si
et seulement s’ils ont au moins une racine complexe commune.

Notons D = A A B. Alors A et B ne sont pas premiers entre eux si et seulement si
D est de degré au moins 1, donc si et seulement si D admet au moins une racine
complexe.

Si D admet une racine complexe « alors (X — «) divise D. Or D divise A et B donc
(X — «) divise A et B, donc « est racine commune de A et de B.

Réciproquement si A et B admettent une racine commune « alors (X — «) divise A
et B donc (X — «) divise D et ainsi D admet au moins une racine. O
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