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3 Soit (G, ∗) un groupe à quatre éléments, d’élément neutre e.

a. On suppose qu’il existe un élément a de G tel que a2 ̸= e. On note b = a2. Justifier
que a ̸= b et construire la table de composition de G.

b. On suppose que tout élément x de G vérifie x2 = e. En notant e, a, b, c les éléments
de G donner sa table de composition.

a. Si a = b alors a2 = a, ce qui donne a = e en simplifiant par a. Or a2 ̸= e donc a ̸= e,
et cette contradiction montre que a ̸= b.
On note c le quatrième élément de G. Comme chaque colonne et chaque ligne de la
table de composition de G contient une seule fois chaque élément, on obtient :

∗ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

On constate que c = a3, donc G = {e, a, a2, a3} avec a4 = e.
Exemples de tels groupes : Z/4Z, l’ensemble des entiers modulo 4, muni de l’addition,
et U4 muni de la multiplication.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1

−1 −1 −i 1 i
−i −i 1 i −1

b. On suppose que a2 = b2 = c2 = e, donc la table de composition de G est :

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Exemples de tels groupes : G = {±1}2 muni de la multiplication.
Ou l’ensemble des matrices :

e =
(

1 0
0 1

)
a =

(
1 0
0 −1

)
b =

(
−1 0

0 1

)
c =

(
−1 0

0 −1

)
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muni de la multiplication matricielle.
Ou le sous-groupe des bijections de C contenant :

e : z 7→ z a : z 7→ z̄ b : z 7→ −z c : z 7→ −z̄

muni de la composition des fonctions.

2 Soit E un ensemble.
Les couples (P(E),∩) et (P(E),∪) sont-ils des groupes ?

Non, l’élément neutre de ∩ est E et l’élément neutre de ∪ est ∅, mais aucun élément non
trivial n’admet d’inverse (dès que E est non-vide).

3 Soit M une matrice de taille (n, n) où n ∈ N∗, à coefficient dans K = R ou C. Soit :

Z(M) = {A ∈ GLn(K) | AM = MA} .

Démontrer que Z(M) est un sous-groupe de (GLn(K),×).

On vérifie les axiomes de la définition d’un sous-groupe.
(sg1) Z(M) ⊆ GLn(K) : c’est évident d’après la définition de Z(M).
(sg2) Z(M) est non-vide : en effet il contient la matrice identité In car celle-ci commute

avec M , i.e., InM = MIn.
(sg3) Z(M) est stable par × :

Soit A et B deux éléments de G. Alors AM = MA et BM = MB.
Donc (AB)M = A(BM) = A(MB) = (AM)B = (MA)B = M(AB), par associa-
tivité de la loi ×.
Donc AB ∈ Z(M). Ceci étant vrai pour toutes matrices A et B de Z(M), on a
démontré que Z(M) est stable par multiplication.

(sg4) Z(M) est stable par passage à l’inverse.
Soit A ∈ Z(M). Alors A ∈ GLn(K) donc A est inversible, et AM = MA.
En multipliant à gauche et à droite par A−1 cette égalité on obtient A−1AMA−1 =
A−1MAA−1, donc MA−1 = A−1M . Ceci montre que A−1 ∈ Z(M).
On a démontré que Z(M) est stable par passage à l’opposé.

Les quatre points ci-dessus montrent que Z(M) est un sous-groupe de (GLn(K),×).
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4 Soit (G, ∗) un groupe d’élément neutre e.
On suppose que pour tout x ∈ G : x2 = e

Démontrer que G est abélien.

Soit x et y deux éléments de G.
Alors x2 = y2 = e, ce qui montre que x−1 = x et y−1 = y.
De plus xy appartient à G donc (xy)2 = e, i.e., xyxy = e.
En multipliant à gauche par x−1 puis par y−1 on obtient yx = x−1y−1 et donc yx = xy.
Ceci étant valable pour tout (x, y) ∈ G2, le groupe G est abélien.

5 Soit (G, ∗) un groupe d’élément neutre e.
Soit x et y deux éléments de G tels que :

xyx = y et yxy = x

Démontrer que x2y2 = e puis que x4 = y4 = e.

Comme xyx = y alors par multiplication à droite par x−1 on obtient xy = yx−1.
Comme yxy = x alors par multiplication à gauche par y−1 on obtient xy = y−1x.
Ainsi yx−1 = y−1x et donc x2 = y2.
Puis x2y2 = x(xy)y = x(yx−1)y = (xy)x−1y = (y−1x)x−1y = y−1(xx−1)y = e.
Enfin x4 = x2y2 = e et de même y4 = e.

6 Soit (G, ∗) un groupe et a un de ses éléments.

a. Démontrer que les applications g 7→ ag et g 7→ ga sont des bijections de G.
Sont-elles des endomorphismes ?

b. Démontrer que l’application g 7→ aga−1 est un automorphisme de G.
c. Donner une condition nécessaire et suffisante pour que l’application g 7→ g−1 soit

un automorphisme de groupe.

a. Pour tout a ∈ G on note φa : G −→ G
g 7−→ ag.

Cette application est bien définie, car si a et g appartiennent à G alors ag appartient
à G, ceci car la loi de G est interne.
On remarque que :

∀g ∈ G φa−1 ◦ φa(g) = a−1ag = g.

Ainsi φa−1 ◦ φa = IdG.
De même φa ◦ φa−1 = IdG, donc φa est bijective, et de plus sa réciproque est φa−1 .
On démontre de même que ψa : G −→ G

g 7−→ ga
est bijective, de réciproque ψa−1 .
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Soit e l’élément neutre de G. Si a ̸= e alors φa(e) = a ̸= e, donc φa n’est pas un
morphisme de groupes.
En effet l’image par un morphisme de groupes de l’élément neutre du groupe de départ
est l’élément neutre du groupe d’arrivée, et ici φa(e) ̸= e.
De même ψa n’est pas un morphisme de groupes si a ̸= e.
Si a = e alors φa = ψa = IdG, il s’agit d’automorphismes de groupes.

b. Pour tout a ∈ G, soit σa : G −→ G
g 7−→ aga−1.

On peut démontrer directement que σa est une bijection de G, mais on peut aussi
remarquer que σa = φa ◦ ψa−1 (en utilisant les notations de la question précédente), et
donc σa est une bijection de G.
On calcule :

∀(x, y) ∈ G2 σa(g)σa(h) =
(
aga−1

)(
aha−1

)
= ag(a−1a)ha−1 = ageha−1 = agha−1 = σa(gh)

Ceci montre que σa est un morphisme de groupes.
Celui-ci étant bijectif de G dans lui-même, c’est un automorphisme de G.

c. Notons τ : G −→ G
g 7−→ g−1.

Comme G est un groupe alors il est stable par passage à l’inverse, i.e., pour tout g ∈ G
on a g−1 ∈ G. Ceci montre que l’application τ est bien définie.
Supposons que τ est un morphisme de groupes. Ceci signifie :

∀(g, h) ∈ G2 τ(gh) = τ(g)τ(h).

Par équivalences :

τ(gh) = τ(g)τ(h) ⇐⇒ (gh)−1 = g−1h−1

⇐⇒ gh =
(
g−1h−1

)−1
= hg

Ainsi τ est un morphisme de groupes si et seulement si G est commutatif.
De plus on remarque que τ ◦ τ = IdG donc τ est bijectif, d’inverse lui-même.
Ainsi τ est un automophisme de groupe si et seulement si G est commutatif.

7 Soit G l’ensemble des bijections de l’ensemble X = {a, b, c}.

a. Justifier que (G, ◦) est un groupe fini.
b. On note e l’élément neutre de G, et τ et σ les applications :

τ : a 7→ b
b 7→ a
c 7→ c

et σ : a 7→ b
b 7→ c
c 7→ a

Démontrer que :
G =

{
e, σ, σ2, τ, τσ, τσ2

}
Identifier l’élément στ .
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a. Il existe six bijections de X dans X, donc le groupe G contient 6 éléments, et il est fini.
En effet si f est une bijection de X alors f(a) peut prendre l’une des trois valeurs a,
b, c, puis f(b) prend l’une des deux valeurs restantes, et enfin f(c) prend la dernière
valeur.
Ceci donne donc 3 × 2 × 1 = 6 possibilités.

b. Plus précisément les six bijections sont les suivantes.
f1 : a 7→ a

b 7→ b
c 7→ c

f2 : a 7→ a
b 7→ c
c 7→ b

f3 : a 7→ b
b 7→ a
c 7→ c

f4 : a 7→ b
b 7→ c
c 7→ a

f5 : a 7→ c
b 7→ a
c 7→ b

f6 : a 7→ c
b 7→ b
c 7→ a

On remarque que f1 est l’identité de X, donc l’élément neutre e de G.
Par définition f3 = τ et f4 = σ.
On calcule les trois composées suivantes :

σ ◦ σ : a 7→ c
b 7→ a
c 7→ b

τ ◦ σ : a 7→ a
b 7→ c
c 7→ b

τ ◦ σ ◦ σ : a 7→ c
b 7→ b
c 7→ a

On constate que f2 = τ ◦ σ, f5 = σ ◦ σ et f6 = τ ◦ σ ◦ σ. Ainsi, en omettant le signe ◦ :

G = {f1, . . . , f6} =
{
e, σ, σ2, τ, τσ, τσ2

}
On calcule aussi que στ = f6 = τσ2.
On peut aussi remarquer que τ 2 = e et σ3 = e, ce qui permet de calculer tous les
produits possibles, et donne la table de multiplication suivante :

◦ e σ σ2 τ τσ τσ2

e e σ σ2 τ τσ τσ2

σ σ σ2 e τσ2 τ τσ

σ2 σ2 e σ τσ τσ2 τ

τ τ τσ τσ2 e σ σ2

τσ τσ τσ2 τ σ2 e σ

τσ2 τσ2 τ τσ σ σ2 e

On constate que G n’est pas un groupe commutatif, par exemple τσ ̸= στ puisque
f2 ̸= f6.
Il s’agit, à isomorphisme près, du plus petit groupe non commutatif.
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8 Le but de cet exercice est de décrire tous les sous-groupes de (Z,+).

a. Démontrer que pour tout m ∈ N, mZ est un sous-groupe de Z.
Soit H un sous-groupe de Z.
b. Démontrer que si H ∩ N∗ est non-vide alors il admet un minimum m, puis que
H = mZ.

c. Qu’en est-il si H ∩N∗ est vide ?
d. Conclure.

a. Par définition mZ est l’ensemble des multiples de m :

mZ = {ma | a ∈ Z}

Il est inclus dans Z, non-vide car il contient 0 par exemple, stable par addition et
passage à l’opposé, donc c’est une sous-groupe de (Z,+).
On peut aussi remarquer que l’application

f : Z −→ Z

a 7−→ ma

est un morphisme de groupes, car :

∀(a, b) ∈ Z2 f(a+ b) = m(a+ b) = ma+mb = f(a) + f(b)

Alors l’image de f est im f = mZ, par propriété c’est un sous-groupe de (Z,+).
b. Supposons que H ∩ N∗ est non-vide. C’est alors une partie non-vide de N, donc par

propriété elle admet un minimum que l’on note m.
Démontrons que H = mZ.
Tout d’abord H contient m car m ∈ H ∩N∗. Comme H est un sous-groupe de (Z,+)
alors il contient tous les itérés am de m avec a ∈ N∗.
Ensuite, comme H est un sous-groupe de (Z,+) alors il contient son élément neutre 0,
donc il contient m× 0.
Enfin, toujours comme H est un sous-groupe de (Z,+) alors il est stable par passage
à l’opposé, donc il contient tous les −ma pour a ∈ N∗, et donc finalement H contient
tous les ma pour a ∈ Z.
On a donc prouvé que mZ ⊆ H.
Démontrons l’inclusion inverse.
Soit h un élément de H. Comme m ∈ H ∩ N∗ alors m est non-nul, donc on peut
effectuer la division euclidienne de h par m : il existe (q, r) ∈ Z2 tels que h = qm + r
avec 0 ⩽ r < m.
Alors r = h− qm. Comme h et qm appartiennent à H alors par stabilité de celui-ci, r
appartient à H. Si r est non-nul alors r ∈ H ∩N∗, mais ceci contredit la minimalité de
m en tant qu’élément de H ∩N∗. Donc r = 0, puis h = qm, et ainsi h ∈ mZ.
On a prouvé que H ⊂ mZ, puis par double inclusion H = mZ.
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c. Supposons que H ∩N∗ est vide. Alors H ne contient aucun élément strictement positif.
Donc il ne contient aucun élément strictement négatif. En effet,H est stable par passage
à l’opposé, donc s’il contenait un élément h strictement négatif il contiendrait −h qui
serait strictement positif.
Ainsi H ne peut contenir que l’élément neutre 0. Il le contient bien car c’est un sous-
groupe de (Z,+).
Donc dans le cas où H ∩N∗ est vide on a H = {0}.
On remarque que H = mZ avec m = 0.

d. Nous avons démontré que les sous-groupes de Z sont les mZ avec m ∈ Z.

9 Soit K = R ou C, et n un entier naturel non-nul. On définit l’application :

f : Mn(K) −→ Mn(K)
M 7−→ 1

2(M + tM)

a. Justifier que f est un endomorphisme du groupe (Mn(K),+).
b. Déterminer le noyau et l’image de f .

a. Soit M et N deux matrices de Mn(K). Alors :

f(M +N) = 1
2

(
(M +N) + t(M +N)

)
= 1

2(M + tM +N + tN)
= 1

2(M + tM) + 1
2(N + tN) = f(M) + f(N).

Ceci montre que f est un morphisme du groupe (Mn(K),+) vers lui-même, donc un
endomorphisme de groupe de (Mn(K),+).

b. L’élément neutre du groupe (Mn(K),+) est la matrice nulle 0n. Donc :

ker f = {M ∈ Mn(K) | f(M) = 0n} .

Par équivalence :

∀M ∈ Mn(K) f(M) = 0n ⇐⇒ tM = −M.

Ceci montre que le noyau de f est l’ensemble des matrices antisymétriques de taille
(n, n) : ker f = An(K).
On démontre par double inclusion que l’image de f est l’ensemble des matrices symé-
triques de taille (n, n) : im f = Sn(K).
L’image de f contient toutes les matrices f(M) pour M ∈ Mn(K). Or :

t(f(M)) = t
(

1
2(M + tM)

)
= 1

2( tM +M) = f(M).

Ceci montre que f(M) est symétrique, ceci pour tout M ∈ Mn(K), donc im f ⊆ Sn(K).
Réciproquement, soit M ∈ Sn(K), i.e., M est une matrice symétrique.
Alors f(M) = 1

2(M +M) = M , donc M ∈ im f . Ceci montre que Sn(K) ⊆ im f .
Par double inclusion : im f = Sn(K).
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10 Soit G = R∗ ×R muni de la loi ∗ définie par :

∀((x, y), (x′, y′)) ∈ G2 (x, y) ∗ (x′, y′) = (xx′, yx′ + y′)

a. Démontrer que (G, ∗) est un groupe.
Est-il abélien ?

b. Démontrer H = {(x, 0) | x ∈ R∗} et K = {(1, y) | y ∈ R} sont deux sous-groupes
abéliens de (G, ∗).

c. Démontrer que les applications :

φ : (R∗,×) −→ G
x 7−→ (x, 0)

et ψ : (R,+) −→ G
y 7−→ (1, y)

sont des morphismes de groupes.
d. Donner les noyaux et les images de ces morphismes. Que retrouve-t-on ?

a. Vérifions les axiomes de définition d’un groupe.
(g1) La loi ∗ est une loi de composition interne de G.

Soit (x, y) et (x′, y′) deux éléments de G, c’est-à-dire que x, y, x′, y′ sont quatre
réels avec x et x′ non-nuls.
Alors (x, y) ∗ (x′, y′) = (xx′, yx′ + y′). Comme x et x′ sont non-nuls alors xx′ est
non-nul, et donc (x, y) ∗ (x′, y′) appartient bien à R∗ ×R, c’est-à-dire à G.
Ceci montre que ∗ est une loi de composition interne de G.

(g2) La loi ∗ est associative.
Soit (x, y), (x′, y′), et (x′′, y′′) trois éléments de G. Alors :

[(x, y) ∗ (x′, y′)] ∗ (x′′, y′′) = (xx′, yx′ + y′) ∗ (x′′, y′′)
= (xx′x′′, (yx′ + y′)x′′ + y′′)
= (xx′x′′, yx′x′′ + y′x′′ + y′′)

et (x, y) ∗ [(x′, y′) ∗ (x′′, y′′)] = (x, y) ∗ (x′x′′, y′x′′ + y′′)
= (xx′x′′, y(x′x′′) + y′x′′ + y′′)
= (xx′x′′, yx′x′′ + y′x′′ + y′′)

On a bien égalité : [(x, y) ∗ (x′, y′)] ∗ (x′′, y′′) = (x, y) ∗ [(x′, y′) ∗ (x′′, y′′)].
Ceci montre que la loi ∗ est associative.

(g3) G contient un élément neutre pour ∗.
Soit e = (1, 0). Alors e appartient à G car (1, 0) ∈ R∗ ×R, et :

∀(x, y) ∈ R∗ ×R (x, y) ∗ e = (x, y) ∗ (1, 0) = (x× 1, y × 1 + 0) = (x, y)
et e ∗ (x, y) = (1, 0) ∗ (x, y) = (1 × x, 0 × x+ y) = (x, y)

Ceci montre que e est élément neutre de G pour la loi ∗.
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(g4) Tout élément de G possède un symétrique dans G.
Soit (x, y) ∈ G. Alors x est non-nul donc 1

x
est défini et appartient à R∗, puis(

1
x
,− y

x

)
∈ G. De plus :

(x, y) ∗
(

1
x
,− y

x

)
=
(
x× 1

x
, y × 1

x
− y

x

)
= (1, 0) = e

et
(

1
x
,− y

x

)
∗ (x, y) =

(
1
x

× x,− y
x

× x+ y
)

= (1, 0) = e

Ceci montre que (x, y) est symétrisable, de symétrique
(

1
x
,− y

x

)
, lequel est bien

dans G.
Ainsi tout élément de G possède un symétrique dans G.

Les quatre points ci-dessus montrent que (G, ∗) est un groupe.
On calcule :

(1, 1) ∗ (2, 3) = (2, 5) et (2, 3) ∗ (1, 1) = (2, 4)
Ceci montre que la loi ∗ n’est pas commutative, i.e., (G, ∗) n’est pas un groupe abélien.

b. Soit H = {(x, 0) | x ∈ R∗}. On vérifie les axiomes de définition d’un sous-groupe.
(sg1) H est inclus dans G : ceci est immédiat.
(sg2) H est non-vide : également, par exemple (1, 0) ∈ H.
(sg3) H est stable par ∗ :

Soit (x, 0) et (x′, 0) deux éléments de H, c’est-à-dire que x et x′ sont deux réels
non-nuls. Alors (x, 0) ∗ (x′, 0) = (xx′, 0) : cet élément appartient bien à H.
Donc H est stable par ∗.

(sg4) H est stable par passage au symétrique :
Soit (x, 0) ∈ H. La formule (x, y)−1 =

(
1
x
,− y

x

)
obtenue dans la question précé-

dente montre que (x, 0)−1 =
(

1
x
, 0
)
, cet élément appartient bien à H.

Donc H est stable par passage au symétrique.
Ces quatre points montrent que H est un sous-groupe de (G, ∗).
Soit K = {(1, y) | y ∈ R}. Alors :
(sg1) K est inclus dans G : c’est immédiat, car 1 ∈ R∗.
(sg2) K est non-vide : également, par exemple (1, 0) ∈ K.
(sg3) K est stable par ∗ :

Soit (1, y) et (1, y′) deux éléments de K, c’est-à-dire que y et y′ sont deux réels.
Alors (1, y) ∗ (1, y′) = (1, y + y′) : cet élément appartient bien à K.
Donc K est stable par ∗.

(sg4) K est stable par passage au symétrique :
Soit (1, y) ∈ K. La formule (x, y)−1 =

(
1
x
,− y

x

)
montre que (1, y)−1 = (1,−y),

cet élément appartient bien à K.
Donc K est stable par passage au symétrique.

Ces quatre points montrent que K est un sous-groupe de (G, ∗).
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c. On vérifie que φ : (R∗,×) −→ (G, ∗)
x 7−→ (x, 0)

et ψ : (R,+) −→ (G, ∗)
y 7−→ (1, y)

sont des morphismes.

Pour le premier :

∀(x, x′) ∈ (R∗)2 φ(x× x′) = (xx′, 0) = (x, 0) ∗ (x′, 0) = φ(x) ∗ φ(x′).

Donc φ est un morphisme de (R∗,×) dans (G, ∗).
Ensuite :

∀(y, y′) ∈ R2 ψ(y + y′) = (1, y + y′) = (1, y) ∗ (1, y′) = ψ(y) ∗ ψ(y′).

Donc ψ est un morphisme de (R,+) dans (G, ∗).
d. Par définition le noyau de φ est kerφ = {x ∈ R∗ | φ(x) = e} où e est l’élément neutre

de G, c’est-à-dire e = (1, 0).
Ainsi kerφ = {1}.
De même kerψ = {y ∈ R | ψ(y) = (1, 0)} donc kerψ = {0}.
Ces deux noyaux sont réduits à l’élément neutre de (R∗,×) et (R,+) respectivement,
ce qui justifie que φ et ψ sont injectifs.
Par définition : imφ = {φ(x) | x ∈ R∗}.
Donc imφ = {(x, 0) | x ∈ R∗}, et ainsi imφ = H.
Ensuite imψ = {ψ(y) | y ∈ R}, donc imψ = {(1, y) | y ∈ R}, et ainsi imψ = K.
L’image d’un morphisme de groupes est un sous-groupe du groupe d’arrivée, donc on
a démontré de nouveau que H et K sont des sous-groupes de (G, ∗).

Soit Aff(R) l’ensemble des applications affines bijectives de R dans R.
Alors (Aff(R), ◦) est un groupe, et on peut démontrer que (G, ∗) est isomorphe à ce groupe
via l’application f : G −→ Aff(R)

(a, b) 7−→ (x 7→ ax+ b)
.
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11 Soit (G, ∗) un groupe, H un sous-groupe de G.
On définit la relation ∼ sur G par :

x ∼ y ⇐⇒ x−1y ∈ H

a. Démontrer que la relation ∼ est une relation d’équivalence.
b. Soit x ∈ G et Cl(x) sa classe d’équivalence.

Démontrer que Cl(x) = xH.
c. Démontrer pour tout x ∈ G l’application mx : H −→ xH

h 7−→ xh
est bijective.

d. On suppose que G est un groupe fini. Démontrer que le cardinal de H divise celui
de G.

a. On vérifie que la relation ∼ est une relation d’équivalence.
• La relation ∼ est réflexive :

∀x ∈ G x ∼ x

En effet x−1x = e, où e est l’élément neutre de G, lequel appartient bien à H car H
est un sous-groupe de G.

• La relation ∼ est symétrique :

∀(x, y) ∈ G2 x ∼ y =⇒ y ∼ x

En effet, si x ∼ y alors x−1y ∈ H. Comme H est un sous-groupe de H alors il est
stable par passage à l’inverse, donc (x−1y)−1 ∈ H, ce qui donne y−1x ∈ H, et donc
y ∼ x.

• La relation ∼ est transitive :

∀(x, y, z) ∈ G3 (x ∼ y et y ∼ z) =⇒ x ∼ z

En effet, si x ∼ y et y ∼ z alors x−1y ∈ H et y−1z ∈ H. Comme H est stable par
produit alors x−1yy−1z ∈ H, ce qui donne x−1z ∈ H, et donc x ∼ z.

Ainsi la relation ∼ est une relation d’équivalence.
b. Par définition la classe d’équivalence de x est :

Cl(x) = {y ∈ G | x ∼ y}

On démontre par double inclusion que Cl(x) = xH où xH = {xh | h ∈ H}.
Soit y ∈ Cl(x). Alors x−1y ∈ H donc il existe h ∈ H tel que x−1y = h. Alors y = xh et
donc y ∈ xH.
Soit y ∈ xH, i.e., y = xh où h est un élément de H. Alors x−1y = h, donc x−1y ∈ H,
puis x ∼ y donc y ∈ Cl(x).
On a démontré par double inclusion que la classe d’équivalence de x est xH.

c. L’application mx : H −→ xH
h 7−→ xh

est bien définie.

On vérifie qu’elle est bijective de réciproque l’application nx : xH −→ H
y 7−→ x−1y

.

En effet cette dernière application est bien définie, et nx ◦mx = IdH , mx ◦ nx = IdxH .
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d. Comme ∼ est une relation d’équivalence sur G alors l’ensemble de ses classes d’équi-
valence est une partition de G.
Notons C1, . . . , Cm l’ensemble des classes d’équivalences. Elles sont en nombre fini car
leur union est G, qui est fini.
Comme elles sont toutes en bijection avec H d’après la question précédente alors elles
sont toute même cardinal, et ce cardinal est celui de H.
Celui-ci est fini car H est inclus dans G.
Comme les classes d’équivalence forment une partition de G alors :

CardG =
m∑

k=1
CardCk = m× CardH

Ainsi le cardinal de H divise celui de G.
Il s’agit du théorème de Lagrange.

12 Pour m et n entiers naturels non-nuls on pose :

f : Un −→ Un

z 7−→ zm.

a. Justifier que f est bien définie et que c’est un endomorphisme du groupe (Un,×).
b. Démontrer que le noyau de f est Um∧n.

a. Soit z ∈ Un. Alors zm est défini, et (zm)n = (zn)m = 1m = 1 car zn = 1 puisque
z ∈ Un. Ceci montre que zm ∈ Un, donc f est bien définie.
De plus pour tout (z, z′) ∈ U2

n :

f(zz′) = (zz′)m = zmz′m = f(z)f(z′)

Ceci montre que f est un endomorphisme du groupe (Un,×).
b. Soit d = m ∧ n. Il existe donc (a, b) ∈ N∗ tel que n = ad et m = bd.

Si z ∈ Ud alors zm = (zd)b = 1 car zd = 1, donc z ∈ ker f .
Réciproquement si z ∈ ker f alors zm = 1, et zn = 1 car z ∈ Un.
D’après le théorème de Bézout il existe (u, v) ∈ Z2 tel que mu + nv = d, donc zd =
zmu+nv = (zm)u × (zn)v = 1 et z ∈ Ud.
On a démontré par double inclusion que ker f = Ud.
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13 Soit A un anneau, a et b deux éléments de A.

a. Démontrer que :
aba = 1 ⇐⇒

(
a2b = ba2 = 1

)
b. Démontrer que dans ce cas a et b sont inversibles et commutent.

a. Sens direct : Si aba = 1 alors a2ba = a. On multiplie à droite par ba, on obtient
a2baba = aba donc a2b = 1.
De même aba2 = a, on multiplie à gauche par ab, ce qui donne ababa2 = aba, donc
ba2 = 1.
Sens indirect : On suppose que a2b = ba2 = 1. Comme a2b = 1 alors a2ba = a, on
multiplie à gauche par ba, on obtient ba3ba = ba2, et comme ba2 = 1 alors aba = 1.

b. On suppose que aba = a2b = ba2 = 1.
Alors a2b = 1 et aba = 1 donc a est inversible d’inverse ab.
Aussi ba2 = 1 et aba = 1 donc a est inversible d’inverse ba.
Ainsi ab = ba par unicité de l’inverse.
Comme a2b = ba2 = 1 alors b est inversible d’inverse a2.

14 Pour tout (x, y) ∈ R on pose :

x⊕ y = x+ y − 1 x⊗ y = x+ y − xy

a. Démontrer que (R,⊕) est un groupe abélien.
b. Démontrer que (R,⊕,⊗) est un anneau commutatif.
c. Cet anneau est-il un corps ?

a. Il est clair que la loi ⊕ est une loi de composition interne de R.
Il faut démontrer qu’elle est associative et commutative, i.e., vérifier que :

∀(x, y, z) ∈ R3 (x⊕ y) ⊕ z = x⊕ (y ⊕ z) et x⊕ y = y ⊕ x

On démontre que 1 est élément neutre pour la loi ⊕, i.e., que :

∀x ∈ R x⊕ 1 = x

L’opposé d’un réel x pour la loi ⊕ est 2 − x, car :

∀x ∈ R x⊕ (2 − x) = 1

Finalement (R,⊕) est un groupe abélien.
b. Il est clair que la loi ⊗ est une loi de composition interne de R.

On démontre qu’elle est associative et commutative :

∀(x, y, z) ∈ R3 (x⊗ y) ⊗ z = x⊗ (y ⊗ z) et x⊗ y = y ⊗ x
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L’élément neutre pour la loi ⊗ est 0 :

∀x ∈ R x⊗ 0 = x

De plus la loi ⊗ est distributive par rapport à la loi ⊕ :

∀(x, y, z) ∈ R3 x⊗ (y ⊕ z) = (x⊗ y) ⊕ (x⊗ z)

Finalement (R,⊕,⊗) est un anneau commutatif.
c. L’élément neutre pour la loi ⊕ est 1.

On démontre que l’anneau commutatif (R,⊕,⊗) est intègre :

∀(x, y) ∈ R2 x⊗ y = 1 =⇒ x = 1 ou y = 1

L’élément neutre pour la loi ⊗ est 0. On vérifie que tout élément de R différent de 1
est inversible, d’inverse x

x−1 :

∀x ∈ R \ {1} x⊗ x

1 − x
= 0

Ceci montre que (R,⊕,⊗) est un corps.

On peut ajouter que l’application :

f : (R,⊕,⊗) −→ (R,+,×)
x 7−→ 1 − x

est un isomorphisme de corps.

15 On note Q[
√

2] =
{
a+ b

√
2
∣∣∣ (a, b) ∈ Q2

}
.

a. Démontrer que Q[
√

2] est un sous-anneau de R.
b. Démontrer que Q[

√
2] est un corps.

On dit alors que Q[
√

2] est un sous-corps de R.

a. On vérifie que Q[
√

2] est inclus dans R, stable par addition, passage à l’opposé, et
stable par produit.

b. Soit x = a+ b
√

2 ∈ Q[
√

2] \ {0}.
Alors x est inversible dans R, d’inverse x−1 = 1

a+b
√

2 . Démontrons que x−1 ∈ Q[
√

2].
Si b = 0 alors a ̸= 0 car x ̸= 0, donc x−1 = 1

a
. Comme a est rationnel non-nul alors 1

a

est rationnel non-nul, et donc x−1 ∈ Q[
√

2].
Si b est non-nul alors a− b

√
2 ̸= 0, sinon on aurait

√
2 = a

b
∈ Q, ce qui est faux car

√
2

est irrationnel.
Donc en multipliant par a− b

√
2 on obtient x−1 = a−b

√
2

a2−2b2 avec a2 −2b2 = (a+ b
√

2)(a−
b
√

2) ̸= 0.
Comme a

a2−2b2 et − b
a2−2b2 sont rationnels alors x−1 ∈ Q[

√
2].

Tout élément non-nul de Q[
√

2] admet un inverse dans Q[
√

2], donc Q[
√

2] est un corps.
C’est un exemple de corps strictement compris entre Q et R.
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16 Soit D l’ensemble des nombres décimaux.

a. Démontrer que D est un sous-groupe de (R,+).
b. Démontrer que (D,+,×) est un anneau. Est-il un corps ?
c. Décrire le groupe de inversibles de D.
d. Donner un isomorphisme f : (Z2,+) → (D∗,×).

a. On justifie que D contient 0, qu’il est stable par addition et par passage à l’opposé.
b. D’après la question précédente (D,+) est un groupe. De plus D est stable par produit.

Les lois + et × sont induites par celles de R donc × est associative et la distributivité
est vérifiée.
De plus 1 est décimal donc 1 ∈ D.
Ainsi (D,+,×) est un anneau commutatif.
Comme 1

3 n’est pas décimal alors 3 n’est pas inversible dans D, donc D n’est pas un
corps.

c. On obtient D∗ =
{

2a5b
∣∣∣ (a, b) ∈ Z2

}
.

d. Par propriété (D∗,×) est un groupe. On définit l’application

f : (Z2,+) −→ (D∗,×)
(a, b) 7−→ 2a5b

Cette application est bien définie et surjective d’après la question précédente.
On démontre que f est un morphisme de groupes :

∀((a, b), (c, d)) ∈
(
Z2
)2

f((a, b) + (c, d)) = f((a+ c, b+ d))
= 2a+c5b+d = 2a5b × 2c5d

= f(a, b) × f(c, d)

Ainsi f est un morphisme de groupes.
Pour démontrer qu’elle est injective on détermine son noyau.
Comme l’élément neutre du groupe (D∗,×) est 1, par définition :

ker f =
{

(a, b) ∈ Z2
∣∣∣ f(a, b) = 1

}
.

Pour tout (a, b) ∈ Z2, l’égalité 2a5b = 1 a lieu si et seulement si a = b = 0.
Ainsi ker f = {(0, 0)}, il s’agit de l’élément neutre du groupe (Z2,+), et donc par
théorème f est injective.
Ainsi f est bijective, et comme c’est un morphisme de groupes alors f est un isomor-
phisme de groupes.
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17 On note :
Z[i] =

{
a+ ib | (a, b) ∈ Z2

}
a. Démontrer que Z[i] muni de l’addition et de la multiplication des complexes est un

anneau.
b. Justifier que l’application N : z 7→ |z| est un morphisme de groupes de (C∗,×) dans(

R∗
+,×

)
.

c. Vérifier que N(Z[i]) ⊆ N.
En déduire le groupe des inversibles de Z[i].

a. On vérifie que Z[i] est un sous-anneau de C. En effet :
• Z[i] est inclus dans C.
• Z[i] contient 1 car 1 = 1 + i× 0 et 1 et 0 sont des entiers.
• Z[i] est stable par addition, car la somme de deux entiers est un entier.
• Z[i] est stable par passage à l’opposé, car l’opposé d’un entier est un entier.
• Z[i] est stable par produit. En effet, si a + ib et c + id sont deux éléments de Z[i],

alors leur produit est :

(a+ ib) × (c+ id) = (ac− bd) + i(ad+ bc)

Comme a, b, c, d sont des entiers alors ac − bd et ad + bc sont des entiers et donc
(a+ ib) × (c+ id) appartient à Z[i].

Ainsi Z[i] est un sous-anneau de C et donc (Z[i],+,×) est un anneau.
b. Pour tout z ∈ C∗ on a N(z) = |z|2 ∈ R∗

+, donc N est une application de C∗ dans R∗
+.

De plus :

∀(z, z′) ∈ (C∗)2 N(zz) = |zz′|2 = (|z||z′|)2 = |z|2|z′|2 = N(z)N(z′).

Ainsi N est un morphisme de groupes de (C∗,×) dans
(
R∗

+,×
)
.

c. Soit z = a+ ib ∈ Z[i]. Alors a et b sont des entiers. Comme N(z) = a2 + b2 alors N(z)
est un entier positif.
Ceci montre que N(Z[i]) ⊆ N.
Supposons que z est inversible dans Z[i]. Alors son inverse z−1 appartient à Z[i].
Comme zz−1 = 1 alors N(zz−1) = N(1) = 1.
Comme N est un morphisme de groupes alors N(zz−1) = N(z)N(Z−1).
Ainsi N(z) est N(z−1) sont des entiers naturels vérifiant N(z)N(Z−1) = 1. Donc
N(z) = N(z−1) = 1.
Ceci donne a2 + b2 = 1 alors a, b entiers. Donc (a, b) = (1, 0), (−1, 0), (0, 1) ou (0,−1).
Effectivement 1, −1, i et −i sont inversibles dans Z[i].
Ainsi Z[i]∗ = {±1,±i}, il s’agit du groupe multiplicatif U4.
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18 Soit K un sous-corps de C, c’est-à-dire un sous-anneau de C qui est un corps.
Démontrer que Q ⊆ K.

Comme K est un corps alors il contient 0 et 1.
De plus (K,+) est un groupe, donc il est stable par addition. On démontre par récurrence
que tout entier n est dans K, et ainsi N ⊆ K.
Aussi K est stable par passage à l’opposé (toujours car (K,+) est un groupe), donc tous
les entiers négatifs sont aussi dans K, et ainsi Z ⊆ K.
Ensuite K est un corps, donc tout élément non-nul est inversible. Or tout entier q stric-
tement positif est dans K, donc tout rationnel 1

q
est dans K.

Enfin K est un anneau donc il est stable par multiplication donc tout rationnel p
q

est dans
K, ce qui achève de démontrer que Q ⊆ K.

19 Démontrer que si un anneau intègre est fini alors c’est un corps.
On pourra considérer, pour un élément a, l’ensemble des ak où k ∈ N.

Soit A un anneau intègre et fini.
Démontrons que A est un corps, donc que tout élément non-nul de A est inversible.
Soit a un élément non-nul de A.
L’ensemble

{
ak
∣∣∣ k ∈ N

}
est inclus dans A car A est stable par produit.

Comme A est fini alors cet ensemble est fini, donc il existe deux entiers naturels k et ℓ
distincts tels que ak = aℓ.
Quitte à les inverser on suppose que k < ℓ.
Comme ak = aℓ alors aℓ − ak = 0, donc ak(aℓ−k − 1) = 0.
Or l’anneau A est intègre donc ak = 0 ou aℓ−k − 1 = 0.
Dans le premier cas on obtient, toujours par intégrité, a = 0. Ceci est supposé faux.
Donc aℓ−k = 1 avec ℓ− k ⩾ 1, ce qui montre que a est inversible d’inverse aℓ−k−1.
Ainsi tout élément non-nul de A est inversible, donc A est un corps.
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20 Soit K un corps et A un anneau.
Démontrer que tout morphisme d’anneaux f : K → A est injectif.

Soit f : K → A un morphisme d’anneaux.
Par théorème f est injectif si et seulement si ker f = {0K}.
D’une part {0K} ⊆ ker f car f(0K) = 0A, car f : K → A est une morphisme de groupes
de (K,+) car (A,+), puisque f est un morphisme d’anneaux.
Démontrons que ker f ⊆ {0K}.
Soit x ∈ ker f . Alors f(x) = 0A. Si x est inversible, alors f(xx−1) = f(1k) = 1A car f
est un morphisme d’anneaux. Or f(xx−1) = f(x)f(x−1) = 0A car f(x) = 0A, et donc on
obtient la contradiction 0A = 1A.
Ainsi x ne peut être inversible, donc x = 0K puisque K est un corps.
On a démontré que ker f ⊆ {0K}, donc ker f = {0K} par double inclusion, et par théorème
f est injectif.

21 On définit l’ensemble :

C =
{(

a b
−b a

) ∣∣∣∣∣ (a, b) ∈ R2
}

a. Démontrer que C est un sous-anneau de (M2(R),+,×).
b. Démontrer que C est un corps
c. Démontrer que le corps C est isomorphe à C, c’est-à-dire qu’il existe un isomor-

phisme d’anneaux de C dans C.

a. On vérifie que C est inclus dans M2(R), non-vide, stable par addition et passage à
l’opposé. Donc (C,+) est un sous-groupe de (M2(R),+).
Ensuite on vérifie que C contient I2 et est stable par ×.
Donc C est un sous-anneau de (M2(R),+,×).

b. Tout élément non-nul est inversible dans M2(R) car son déterminant a2+b2 est non-nul.
On vérifie que son inverse appartient à C, donc C est stable par passage à l’inverse, et
ainsi C est un corps.

c. Posons par exemple f : C −→ C

a+ ib 7−→
(

a b
−b a

)
.

On vérifie que f(1) = I2, et que f est compatible avec l’addition et la multiplication.
Donc f est un morphisme d’anneaux.
Il est clair que f est bijectif, donc f est un isomorphisme d’anneaux (donc de corps).
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