

# Association Modulateur – Convertisseur

HACHEUR – MOTEUR A COURANT CONTINU

BINOME – 1 SEANCE

## **1 PRESENTATION**

### **Objectifs**

L'objectif de ce TP est d'analyser l'association hacheur – moteur à courant continu en utilisant un modèle multiphysique, c'est-à-dire :

- analyser le fonctionnement d'un hacheur série ;
- □ comprendre la nécessité d'autres types de hacheurs.

### Activité 0 : travail préliminaire

- **D** Copier le fichier « ModelisationHacheur.zip » sur votre espace personnel.
- **Décompresser** le fichier.
- Ouvrir Matlab.

## **2** HACHEUR MANUEL...

### Activité 1 : interrupteur commandé manuellement

- Ouvrir le fichier Decouverte.slx et lancer la simulation.
- □ Visualiser la vitesse de rotation du moteur.
- □ Visualiser la tension aux bornes de l'interrupteur (peut ne pas être exploitable...).
- □ Cliquer sur l'interrupteur pour visualiser l'évolution des grandeurs physiques.
- Quelle est la vitesse maximale du moteur grâce à l'interrupteur ?
- Comment obtenir la moitié de la vitesse maximale ?
- □ Vous venez de créer votre premier hacheur... Expliquer le rôle et le fonctionnement d'un hacheur.
- **D** Proposer une solution pour inverser le sens de rotation du moteur.

### **3** INTERRUPTEUR COMMANDE

## Activité 2 : interrupteur commandé

Ouvrir le fichier Hacheur\_01.slx

L'interrupteur commandé a été remplacé par un transistor MOFSET. Le principe est le même sauf que l'interrupteur est maintenant commandé électriquement par un signal de valeur 0 ou 1.

□ Lancer la simulation et visualiser les signaux.

#### Influence de la période

- Quel est le sens physique de « Periode » dans le bloc signal de commande du transistor ? 0
- Quel est le sens physique de « Pulse Width » dans le bloc signal de commande du transistor ? 0
- Quelle est l'allure du signal pour une période de 0,1 sec ? Quelle est l'influence sur la vitesse de  $\circ$ rotation?
- Quelle est l'allure du signal pour une période de 0,025 sec ? Quelle est l'influence sur la vitesse de 0 rotation?
- 0 Quelle est l'allure du signal pour une période de 0,001 sec ? Quelle est l'influence sur la vitesse de rotation ?
- Quelle est l'allure du signal pour une période de 0,0001 sec ? Quelle est l'influence sur la vitesse de 0 rotation?
- Conclure. 0

#### Influence de la période de hachage

- Quelle est la valeur de la vitesse de rotation pour une « Pulse Width » de 99 % ? 0
- Quelle est la valeur de la vitesse de rotation pour une « Pulse Width » de 50 % ? 0
- Quelle est la valeur de la vitesse de rotation pour une « Pulse Width » de 33 % ? 0
- 0 Conclure.
- Proposer une solution pour inverser le sens de rotation du moteur.

### Activité 3 (Facultative)

Pour une période de 0,001 s et un rapport cyclique de 5%, visualiser le courant traversant le moteur. Commenter.

Couple

Ajouter une inductance de 200 mH en série avec le moteur. Commenter.

#### LE HACHEUR 4 QUADRANTS Δ

Le hacheur précédent est appelé hacheur série. Il permet de faire tourner un moteur dans un sens.

Cependant il existe d'autres cas d'utilisation possibles :

- le moteur tourne dans en sens en • entrainant une charge ;
- le moteur tourne dans le sens inverse en entrainant une charge;
- la charge entraine le moteur (qui retient la charge);
- la charge entraine le moteur, dans le sens inverse (le moteur retient la charge).

#### **PRESENTATION DU SYSTEME REEL** 5

#### 5.1 Le robot Ericc3

Le Robot Ericc3 est un robot qui présente un caractère anthropomorphique. Il est constitué de 5 axes asservis en position. On considérera deux configurations :

Configuration 1 : bras replié



Lacet =  $0^\circ$ ; Epaule =  $39^\circ$ ; *Coude* =  $-90^{\circ}$ , *Poignet* =  $130^{\circ}$ 

Configuration 2 : bras déplié

=



 $Lacet = 0^{\circ}$ ;  $Epaule = 90^{\circ}$ ;  $Coude = 0^{\circ}, Poignet = 90^{\circ}$ 

Couple T

On s'intéresse ici uniquement à l'asservissement autour de l'axe de lacet.



#### 5.2 Analyse structurelle du robot

Activité 0 :

Réaliser la chaine fonctionnelle décrivant la chaine cinématique « axe de lacet ».

#### **ANALYSE DU MODELE SIMMECHANICS** 6

| Activité | 1 : ouvrir un modèle                                                                                                                                                                                                                      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Copier le dossier «ModeleEricC» sur votre espace personnel.                                                                                                                                                                               |
|          | Ouvrir Matlab (s'il n'est pas déjà ouvert !)                                                                                                                                                                                              |
|          | Placer le chemin d'accès de ce dossier dans la barre d'adresse Matlab.                                                                                                                                                                    |
| < 🔶 🖬    | 🝶 河 📁 🕨 D: 🕨 Documents(D) 🕨 Bellevue 🕨 0-PSI 🕨 1-Cycle 1 Chaine Multiphysique 🕨 3 TP OK 🕨 TP1 🕨 ModelisationHacheur 🕨 ModeleEricC 🎙                                                                                                       |
|          | Dans Matlab ouvrir le fichier « ericc3_DataFile.m » et « data_modele_ericc.m » puis les exécuter. On note dans le workspace la création d'un objet appelé smiData qui contient l'ensemble des variables mécaniques nécessaires au calcul. |
|          | Lancer Simulink et ouvrir le fichier Ericc3_SimMeca.slx.                                                                                                                                                                                  |
|          | Exécuter le programme, observer le résultat de la simulation et expliquer ce comportement.                                                                                                                                                |
|          |                                                                                                                                                                                                                                           |

Activité 2 : modifier un modèle

On peut bloquer des rotations en modifiant les blocs intitulés « Revolute » (liaisons pivot).

- « Actuation » permet de préciser les grandeurs imposées (torque signifie couple en Anglais).
- « Sensing » permet de préciser les grandeurs mesurées.



- Modifier alors le fichier Ericc3\_SimMeca.slx pour obtenir le bras dans sa configuration 2 tout en laissant la possibilité de commander la liaison entre la chaise et le bâti. (Angles en radian).
- □ Sauvegarder votre travail.

## 7 CONSTRUCTION DU MODELE DU MOTEUR A COURANT CONTINU

Le moteur à courant continu du robot est caractérisé par les paramètres suivants :

- $\Box \quad K_t : \text{la constante de couple };$
- $\Box \quad K_e : \text{la constante de force contre} \\ \text{électromotrice (fcem) ;}$
- $\square$  *R* : la résistance de l'induit ;
- $\Box$  *L* : l'inductance de l'induit ;
- $\Box$   $J_m$  : Inertie de l'arbre moteur ;

On note :

- *u<sub>m</sub>(t)* : la tension appliquée aux bornes de l'induit ;
- $\Box$  e(t) : tension de force contre-électromotrice ;
- $\Box \quad i_m(t)$  : le courant absorbé par l'induit ;
- $\square$   $\omega_m(t)$  : la vitesse angulaire de l'arbre ;
- $\Box \quad C_m(t): \text{ le couple moteur.}$

Les équations temporelles décrivant le fonctionnement d'un moteur à courant continu seul sont données ci-dessous :

$$C_m(t) - f_v \cdot \omega_m(t) = J_m \frac{d\omega_m(t)}{dt} \qquad \qquad u_m(t) = e(t) + L \frac{di_m(t)}{dt} + R \cdot i(t)$$
$$e(t) = K_e \cdot \omega_m(t) \qquad \qquad C_m(t) = K_c \cdot i_m(t)$$



Les données numériques nécessaires à la réalisation du modèle sont déclarées dans le fichier : data\_modele\_ericc.m.

### 7.1 Construction du modèle électrique

### Créer un nouveau fichier Simulink (Blank model).

Activité 3 : construire le modèle électrique

- On modélisera ici le comportement donné par l'équation issue de la loi des mailles en utilisant ici les blocs situés dans la bibliothèque : Simscape ▶ Foundation Library ▶ Electrical :
  - la tension u<sub>m</sub>(t) sera imposée par un bloc Controlled Voltage Source (catégorie : Electrical Sources);
    - l'intensité pourra être mesurée par un bloc Current sensor (catégorie : Electrical Sensors) ;
    - les autres composants se trouveront dans la catérgorie « *Electrical Elements* ».

Pour imposer la tension  $u_m(t)$  (échelon) et pour visualiser l'intensité  $i_m(t)$ , il faut utiliser des blocs qui permettent de passer de grandeurs causales à acausales (« Simulink – PS converter ») et inversement (« PS Simulink Converter ») situés dans la catégorie « Simscape > Utilities ».

Dans Simulink, réaliser le schéma électrique de la motorisation du robot sans la conversion électromécanique.

#### 7.2 Construction du modèle mécanique

### Activité 4 : construire le modèle mécanique

- On modélisera ici le comportement donné par l'équation mécanique issue du PFD en utilisant ici les blocs situés dans la bibliothèque : Simscape > Foundation Library > Mechanical :
  - on modélisera une inertie en rotation par rapport à une référence de mouvement de rotation à l'aide de blocs situé dans « Rotational Elements » ;
  - pour visualiser la rotation du moteur il faut utiliser un bloc « Ideal Rotational Motion Sensor » (catégorie « Mechanical sensor ») couplé à un bloc qui permet de passer de grandeurs acausales à causales (« PS-Simulink Converter ») situés dans la catégorie « Simscape 🕨 Utilities » qu'on raccordera au port noté «W».

Dans Simulink, réaliser le schéma mécanique de la motorisation du robot sans la conversion électromécanique.

#### 7.3 Construction complète de la modélisation électromécanique du moteur (acausal)

### Activité 5 : réaliser le lien électro-mécanique

- On modélisera ici le comportement donné par les équations électromécaniques.
  - Le convertisseur électromécanique d'un moteur à courant continu se modélise à l'aide du bloc « Rotational Electromechanical Converter » situé dans la catégorie « Simscape > Foundation Library
    - ▶ Electrical Elements ▶ Rotational Electromechanical Converter.
- Raccorder les deux schémas électrique et mécanique définis précédemment à l'aide du bloc de conversion électromécanique. Il faudra utiliser un bloc Solver Configuration présent dans Simscape 🕨 Utilities à connecter (par exemple) au flux électrique.
- Réaliser la simulation consistant à imposer un échelon de tension au moteur (5V) et à visualiser la réponse en vitesse de rotation du moteur.
- Sauvegarder votre modèle.

#### 7.4 Couplage du moteur et du modèle SimMechanics

## Activité 6 : couplage

Revenir au modèle mécanique. On cherche à piloter l'axe de lacet tout en mesurant son évolution. Pour cela, réaliser les modifications ci-contre su votre modèle.

Copier-coller le modèle de moteur dans le

modèle mécanique et relier la sortie du





## 8 CONSTRUCTION DU MODELE DU ROBOT ERICC3

On donne le schéma bloc global du système :



- L'angle de consigne de lacet se note :  $\theta_c(p)$ .
- □ La vitesse de rotation à la sortie du moteur se note  $\theta_m(p)$ .
- □ La vitesse de rotation à la sortie du réducteur se note  $\theta_r(p)$ .
- Le système comporte un correcteur PID (Proportionnel Intégral Dérivé). Ici n'est représenté que le correcteur Proportionnel (de gain  $K_p$ ) et Intégrale (de gain  $K_i$ ). Dans l'étude on n'étudiera que l'influence de  $K_p$ . Ainsi on prendra  $K_i = 0$ .
- Après une conversion numérique analogique, on modélise le moteur avec un variateur (de constante  $K_v$ ) qui permet d'imposer au moteur un courant  $I_m(p)$
- □ On note  $C_m(p)$  le couple délivré par le moteur.
- **L**e frottement visqueux est modélisé par le coefficient  $f_v$ .
- **\Box** Le **système de réduction** de vitesse de fonction de transfert  $K_r$  est composé
  - d'un réducteur poulie-courroie (vidéo2) ;
  - d'un réducteur Harmonic Drive de rapport de réduction 1/100.



La chaine retour est composée d'un **capteur de position** qui mesure directement l'angle à la sortie du moteur. C'est un codeur incrémental et on prendra comme gain 1.

### Activité 7 : comparaison causale-acausale

- **D**éterminer le rapport de réduction  $K_r$  du système.
- □ Compléter le schéma bloc modele\_ericc\_complet\_eleve.slx pour modéliser le système asservi en boucle fermée.
- □ Lancer la simulation et analyser les résultats.
- Conclure quant aux avantages et inconvénients des deux méthodes de modélisation employées.

## **9 A**NALYSE TEMPORELLE DES PERFORMANCES DU ROBOT

### 9.1 Comparaison des performances simulées entre les modèles causal et acausal

L'étude portera sur les configurations 1 et 2 (bras en partie replié et déplié).

### Activité 8

- □ Modifier le programme pour tenir compte des configurations 1 et 2.
- D Exécuter la simulation sur une durée de 2.5s et observer le résultat en double cliquant sur le Scope.

### 9.2 Comparaison des performances simulées et expérimentales

Le schéma bloc "modele\_ericc\_complet\_eleve.slx" comporte une partie permettant de tracer le résultat expérimental.

| $K_p$           | Configuration | Nom du fichier de données |
|-----------------|---------------|---------------------------|
| 106             | 1             | conf1_1e6.csv             |
| 10 <sup>6</sup> | 2             | conf2_1e6.csv             |
| 10 <sup>5</sup> | 1             | conf1_1e5.csv             |
| 10 <sup>5</sup> | 2             | conf2_1e5.csv             |

### Activité 9

Mettre en place des simulations pour comparer les essais expérimentaux et numériques.

Device the second secon

## **10 ANNEXE HACHEUR**

## 10.1 La commande en modulation de largeur d'impulsion : « MLI » (ou PWM)

La technique la plus utilisée est la Modulation de Largeur d'Impulsion (MLI) ou Pulse Width Modulation (PWM) en anglais.

Une manière pratique de réaliser la conversion Numérique/Analogique est d'exploiter les performances des ports numériques de sortie du microcontrôleur ou du calculateur ;

Beaucoup de microcontrôleurs disposent à l'intérieur de circuits dédiés facilitant la génération de signaux PWM.

La programmation effectue le « hachage » du signal en

exploitant les performances des « timers » qui libèrent l'occupation du processeur.

La fréquence du signal va dépendre de l'application. Pour commander une diode lumineuse, la fréquence doit être supérieure à 100Hz, pour que l'oeil humain ne voie pas le clignotement. Dans ce cas, c'est bien l'oeil qui effectue l'intégration du signal pour en percevoir une valeur moyenne. Pour un moteur à courant continu, ce sont à la fois l'inductance de son circuit électrique et son inertie qui participent à cette intégration. Les fréquences des signaux PWM peuvent aller couramment jusqu'à des centaines de kHz. Mais plus la fréquence est élevée, plus les pertes électriques à l'instant des commutation sont importantes et peuvent dissiper de l'énergie dans les éléments de commutation. L'utilisation de **fréquences** 



supérieures à 20 kHz permet d'éviter que l'oreille humaine ne perçoive les vibrations induites par la commande.

### 10.2 Modulation de puissance par convertisseur statique

Les broches de sortie des microcontrôleurs fournissent quelques dizaines de milliampères, sous des faibles tensions (3,3V ou 5V) ; il est donc nécessaire d'utiliser des convertisseurs de puissance. Nous étudions le cas du moteur à courant continu qui doit être commandé dans ses quatre quadrants (2 sens de rotation et moteur/récepteur) :





a. Circuit de base



ce schéma conduit à l'appellation du circuit « pont en H » :



**Réalisation des interrupteurs :** thyristors, transistors bipolaires, transistors à effet de champ (Mosfet).

(Nota : prendre garde à éviter les courts-circuits : ne pas alimenter simultanément K1, K2 ou K3, K4).

## b. Exemple de circuit de puissance avec des transistors MOSFETS



les MOSFETS (H1, H2, H3, H4) utilisés en mode de commutation présentent l'intérêt de faibles pertes à puissance transmise élevée.

Les diodes D1, D2, D3, D4 permettent :

- d'évacuer les pics de tensions inverses générés par la charge inductive lors des phases de commutation (= « diodes de roue libre »);

- de faire circuler le courant pour la récupération

d'énergie (moteur en générateur) ou le freinage.

Compléter les schémas en coloriant le circuit de circulation du courant (commande donnée : H1, H2, H3, H4)

