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Corrigé partiel du T. D. B3
Ensembles

9 Soit a, b, c, d quatre complexes avec c non-nul et ad ̸= bc.

On pose : f(z) = az + b

cz + d
a. Donner l’ensemble de définition de f , que l’on note C1.
b. Démontrer que f : C1 → C est injective.
c. Calculer l’image de C1 par f , qui l’on note C2 : C2 = f(C1).
d. Justifier que f réalise une bijection de C1 dans C2. Calculer sa réciproque.

a. Si z ∈ C alors f(z) est défini si et seulement si cz + d ̸= 0, i.e., z ̸= − d
c car c ̸= 0.

L’ensemble de définition de f est donc : C1 = C \
{

− d
c

}
.

b. Soit (z, z′) ∈ C2
1 . Par équivalences successives :

f(z) = f(z′) ⇐⇒ az + b

cz + d
= az′ + c

cz′ + d

⇐⇒ (az + b)(cz′ + d) = (az′ + b)(cz + d)
⇐⇒ adz + bcz′ = adz′ + bcz

⇐⇒ (ad − bc)(z − z′) = 0
⇐⇒ z − z′ = 0 car ad − bc ̸= 0

Ceci montre :
∀(z, z′) ∈ C2

1 f(z) = f(z′) =⇒ z = z′.

La fonction f : C1 → C est donc injective.
c. Soit u un complexe. On cherche à quelle condition u il admet un antécédent z par f .

f(z) = u ⇐⇒ az + b

cz + d
= u

⇐⇒ az + b = czu + du

⇐⇒ (a − cu)z = du − b

Si u = a
c alors l’équation devient 0 = ad

c − b, donc ad−bc
c = 0. Comme ad − bc ̸= 0 alors elle n’a pas de

solution.
Si u ̸= a

c alors l’équation donne :

z = du − b

a − cu
.

Vérifions que cet antécédent appartient à C1 :
du − b

a − cu
= −d

c
⇐⇒ cdu − bc = bcu − ad ⇐⇒ ad − bc = 0

Comme ad − bc ̸= 0 alors du−b
a−cu ̸= − d

c .
Ceci montre que u admet un et un seul entécédent dans C1 si u ̸= a

c , et aucun sinon.
Ainsi l’image de f est C2 = C \

{
a
c

}
.

d. D’après la question précédente, tout complexe de C2 admet un et un seul antécédent dans C1. Ainsi
f : C1 → C2 est bijective.
De plus sa réciproque est :

f−1 : C2 −→ C1
z 7−→ dz−b

−cz+a .
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10 Soit E un ensemble, et A une partie de E. On définit l’application f : P(E) −→ P(A)
X 7−→ X ∩ A

a. Démontrer que f est surjective.
b. Donner une condition nécessaire et suffisante pour que f soit injective.

a. Soit B ∈ P(A). Alors B est une partie de A, qui est une partie de E, donc B est une partie de E :
B ∈ P(E).
Alors f(B) est définie, et f(B) = B ∩ A = B car B ⊆ A.
Ainsi tout élément de P(A) admet un antécédent par f , donc f est surjective.

b. On démontre que f est injective si et seulement si A = E.
• Si A = E alors P(A) = P(E), et pour tout B ∈ P(E) : f(B) = B ∩ E = B.

Donc f est l’identité de P(E). Elle est bijective, et a fortiori injective.
• Réciproquement, supposons que f est injective.

Comme A ⊆ E alors f(A) = A ∩ A = A, et f(E) = E ∩ A = A. Ainsi f(A) = f(E), et comme f
est injective alors A = E.

Par double implication : f est injective si et seulement si A = E.

11 Soit E un ensemble, A et B deux parties de E. On définit l’application :

f : P(E) −→ P(A) × P(B)
X 7−→ (X ∩ A, X ∩ B)

Démontrer que :
a. f est injective si et seulement si A ∪ B = E.
b. f est surjective si et seulement si A ∩ B = ∅.

a. Supposons que f est injective, démontrons que A ∪ B = E.
Tout d’abord f(E) = (E ∩ A, E ∩ B) = (A, B).
De plus f(A ∪ B) = ((A ∪ B) ∩ A, (A ∪ B) ∩ B).
Comme A est inclus dans A ∪ B alors (A ∪ B) ∩ A = A, et comme B est inclus dans A ∪ B alors
(A ∪ B) ∩ B = B, donc f(A ∪ B) = (A, B).
Ainsi f(E) = f(A ∪ B). Comme f est injective alors E = A ∪ B.
Supposons maintenant que A ∪ B = E et démontrons que f est injective.
Soit X et X ′ deux parties de E telles que f(X) = f(X ′).
Ceci donne X ∩A = X ′ ∩A et X ∩B = X ′ ∩B. On en déduit (X ∩A)∪ (X ∩B) = (X ′ ∩A)∪ (X ′ ∩B).
Par distributivité et comme A ∪ B = E :

(X ∩ A) ∪ (X ∩ B) = X ∩ (A ∪ B) = X ∩ E = X

De même (X ′ ∩ A) ∪ (X ′ ∩ B) = X ′, et donc X = X ′.
On a démontré que pour toutes parties X et X ′ de E, si f(X) = f(X ′) alors X = X ′. Ainsi f est
injective.
Finalement par double implication nous avons démontré que f est injective si et seulement si A∪B = E.

b. Supposons que f est surjective et démontrons que A ∩ B = ∅.
Comme A ⊆ A et ∅ ⊆ B alors le couple (A,∅) appartient à P(A) × P(B). Par sujectivité de f il
admet un antécédent par f , i.e., il existe X ∈ P(E) tel que f(X) = (A,∅). Ce sous-ensemble vérifie
alors X ∩ A = A et X ∩ B = ∅.
Comme X ∩ A = A alors A ⊆ X. On en déduit A ∩ B ⊆ X ∩ B = ∅, donc A ∩ B = ∅.
On a démontré que si f est surjective alors A ∩ B = ∅.
Supposons que A ∩ B = ∅ et démontrons que f est surjective.
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Soit (C, D) un élément de P(A) ×P(B), c’est-à-dire que C est une partie de A et D est une partie de
B.
Posons X = C ∪ D. Alors X ∩ A = (C ∩ A) ∪ (D ∩ A). Comme C ⊆ A alors C ∩ A = A. Comme D ⊆ B
alors D ∩ A ⊆ B ∩ A = ∅, donc D ∩ A = ∅. Ainsi X ∩ A = C ∪ ∅ = C.
De même on obtient X ∩ B = D, et ainsi f(X) = (C, D).
On a démontré que tout élément de P(A)×P(B) possède un antécédent par f , i.e., que f est surjective.
Par double implication on a démontré que f est sujective si et seulement si A ∩ B = ∅.

12 Soit E un ensemble. Démontrer qu’il n’existe pas d’application surjective f de E dans P(E).
On pourra pour ceci considérer la partie :

A = {x ∈ E | x ̸∈ f(x)}

On raisonne par l’absurde, en supposant qu’il existe une application f : E → P(E) surjective.
Posons alors : A = {x ∈ E | x ̸∈ f(x)}.
Si x est élément de E alors f(x) est une partie de E donc la relation x ∈ f(x) a un sens. Ainsi A est bien
définie, et c’est une partie de E.
Comme f est surjective et A ∈ P(E) alors A admet un antécédent par f . Soit x un tel antécédent, i.e.,
soit x un élément de E tel que f(x) = A. Alors x est élément de E : x ∈ E.
Si x ∈ f(x) alors x ∈ A, ce qui par définition de A montre que x ̸∈ f(x).
Si x ̸∈ f(x) alors x ∈ A par définition de A donc x ∈ f(x).
L’équivalence x ∈ A ⇐⇒ x ̸∈ A est fausse, donc on aboutit à une contradiction.
Il n’existe donc pas d’application f : E → P(E) surjective.

14 Soit E et F deux ensembles, et f une application de E dans F . Soit A, A′ deux parties de E.
Démontrer :
a. Si A ⊆ A′ alors f(A) ⊆ f(A′).
b. f(A ∩ A′) ⊆ f(A) ∩ f(A′).
c. Si f est injective alors f(A ∩ A′) = f(A) ∩ f(A′).
d. f(A ∪ A′) = f(A) ∪ f(A′).
e. Si f est injective alors f(A) ⊆ f(A).
f. Si f est surjective alors f(A) ⊆ f(A).

a. Supposons que A ⊆ A′.
Soit y ∈ f(A). Alors il existe x ∈ A tel que y = f(x). Comme x ∈ A alors x ∈ A′ et donc y ∈ f(A′).
Ceci montre que f(A) ⊆ f(A′).

b. Comme A ∩ A′ ⊆ A et A ∩ A′ ⊆ A′ alors d’après la question précédente f(A ∩ A′) ⊆ f(A) et
f(A ∩ A′) ⊆ f(A), ce qui donne f(A ∩ A′) ⊆ f(A) ∩ f(A′).
On peut remarquer que l’inclusion réciproque est fausse en général.
Par exemple avec la fonction f : x 7→ x2 de R dans R, A = R− et A′ = R+. Alors f(A ∩ A′) =
f({0}) = {0}, alors que f(A) ∩ f(A′) = R+ ∩R+ = R+.

c. Supposons que f est injective.
On sait déjà que f(A ∩ A′) ⊆ f(A) ∩ f(A′) grâce à la question précédente.
Démontrons l’inclusion réciproque.
Soit y ∈ f(A) ∩ f(A′). Alors y ∈ f(A) et y ∈ f(A′), donc il existe x ∈ A tel que f(x) = y et x′ ∈ A′

tel que f(x′) = y.
Ainsi f(x) = f(x′), donc x = x′ car f est injective.
Donc y = f(x) avec x ∈ A ∩ A′, ce qui donne y ∈ f(A ∩ A′).
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On a démontré que f(A) ∩ f(A′) ⊆ f(A ∩ A′).
Par double inclusion : f(A ∩ A′) = f(A) ∩ f(A′).

d. Comme A ⊆ A ∪ A′ et A′ ⊆ A ∪ A′ alors d’après la première question f(A) ⊆ f(A ∪ A′) et f(A′) ⊆
f(A ∪ A′), ce qui donne f(A) ∪ f(A′) ⊆ f(A ∪ A′).
Démontrons l’inclusion réciproque.
Soit y ∈ f(A ∪ A′). Alors il existe x ∈ A ∪ A′ tel que y = f(x).
Ainsi x ∈ A ou x ∈ A′. Dans le premier cas y ∈ f(A), dans le second cas y ∈ f(A′), donc y ∈
f(A) ∪ f(A′).
On a démontré que f(A ∪ A′) ⊆ f(A) ∪ f(A′).
Par double inclusion : f(A ∪ A′) = f(A) ∪ f(A′).

e. Supposons que f est injective.
Soit y ∈ f(A). Alors il existe x ∈ A tel que y = f(x).
Si y ∈ f(A) alors il existe aussi x′ ∈ A tel que y = f(x′). Mais alors f(x) = f(x′), de qui implique que
x = x′ car f est injective, et donc x ∈ A ∩ A = ∅, ce qui est impossible.
Ainsi y ̸∈ f(A) et donc y ∈ f(A).
On a démontré que f(A) ⊆ f(A).

f. Supposons que f est surjective.
Soit y ∈ f(A), i.e., y ̸∈ f(A).
Comme f est surjective alors il existe x ∈ E tel que y = f(x). Si x ∈ A alors y ∈ f(A), ce qui est
supposé faux. Donc x ̸∈ A, i.e., x ∈ A, et enfin y ∈ f(A).
On a démontré que f(A) ⊆ f(A).

Contre exemple : considérons encore la fonction f : x 7→ x2 de R dans R, avec A = R+.
Alors f(A) = f(R∗

−) = R∗
+, et f(A) = R+ = R∗

−. On n’a ni f(A) ⊆ f(A), ni f(A) ⊆ f(A).
On peut démontrer que
• f est injective si et seulement si pour toute partie A de E : f(A) ⊆ f(A),
• f est surjective si et seulement si pour toute partie A de E : f(A) ⊆ f(A).

15 La relation de congruence modulo π est définie sur R par :
∀(x, y) ∈ R2 x ≡ y [π] ⇐⇒ ∃k ∈ Z x − y = kπ

a. Démontrer que cette relation est une relation d’équivalence.
b. Quelle est la classe d’équivalence d’un réel x0 ?

a. On démontre que la relation ≡ est réflexive, symétrique et transitive.
• Soit x ∈ R. Alors x − x = 0π et 0 ∈ Z donc x ≡ x.

La relation ≡ est réflexive.
• Soit (x, y) ∈ R2 tel que x ≡ y. Alors il existe k ∈ Z tel que x − y = kπ, donc tel que y − x = −kπ.

Comme k ∈ Z alors −k ∈ Z donc y ≡ x.
La relation ≡ est symétrique.

• Soit (x, y, z) ∈ R3 tel que x ≡ y et y ≡ z. Alors il existe k ∈ Z tel que x − y = kπ et ℓ ∈ Z tel que
y − z = ℓπ.
Par somme x − z = (x − y) + (y − z) = (k + ℓ)π. Comme k ∈ Z et ℓ ∈ Z alors k + ℓ ∈ Z. Ceci
montre que x ≡ z.
La relation ≡ est transitive.

La relation ≡ est réflexive, symétrique et transitive donc c’est une relation d’équivalence.
b. Soit x0 un réel. Alors pour tout réel y :

x0 ≡ y [π] ⇐⇒ ∃k ∈ Z y = x0 + kπ.
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La classe d’équivalence de x0 est donc :

Cl(x0) = {x0 + kπ | k ∈ Z} .

On peut ajouter que chaque classe d’équivalence admet un et un seul représentant dans l’intervalle
[0, π[.

16 Soit E la classe de tous les ensembles finis.
Pour deux ensembles finis E et F on note E ∼ F s’il existe une bijection de E dans F .
a. Démontrer que ∼ est une relation d’équivalence sur E.
b. Quelles sont les classes d’équivalences ?

a. On démontre que la relation ∼ est réflexive, symétrique et transitive.
• Soit E ∈ E, c’est-à-dire soit E un ensemble fini. Alors l’application identité IdE est une bijection de

E dans E, donc E ∼ E.
Ceci montre que la relation ∼ est réflexive.

• Soit E et F deux ensembles finis. Si E ∼ F alors il existe une bijection f : E → F . Cette bijection
aadmet alors une réciproque f−1 : F → E, qui est aussi bijective. Donc F ∼ E.
Si E ∼ F alors F ∼ E, donc la relation ∼ est symétrique.

• Soit E, F , G trois ensembles finis. Si E ∼ F et F ∼ G alors il existe deux applications bijectives
f : E → F et g : F → G. La composée g ◦ f est alors une bijection de E dans G, et ainsi E ∼ G.
Ceci montre que la relation ∼ est transitive.

La relation ∼ est réflexive, symétrique et transitive, donc c’est une relation d’équivalence.
b. Soit E un ensemble fini, soit n son cardinal.

La classe d’quivalence de E est l’ensemble de tous les ensembles finis en bijection avec E. Il s’agit de
tous les ensembles de cardinal n.
En effet, un ensemble fini F est dans la classe de E si et seulement s’il existe une bijection f : E → F .
Dans ce cas E et F ont même cardinal, et donc F est de cardinal n.
Si F est un ensemble de cardinal n alors il existe une bijection de E dans F . En effet, on peut noter
x1, . . . , xn les éléments de E et y1, . . . , yn les éléments de F . Alors l’application f de E dans F qui a
tout xi associe yi est une bijection, donc F est dans la classe de E.
L’ensemble des classes d’équivalence pour la relation ∼ permet ainsi de définir l’ensemble des entiers
naturels.

17 On munit R2 d’une relation que l’on note ⩽ en posant, pour (a, b) et (a′, b′) dans R2 :

(a, b) ⩽ (a′, b′) ⇐⇒ a < a′ ou (a = a′ et b ⩽ b′)

a. Démontrer que cette nouvelle relation est une relation d’ordre. Est-elle totale ?
b. L’axe des abscisses et l’axe des ordonnées sont-ils bornés ? Possèdent-ils un minimum et un maxi-

mum ? Et le cercle trigonométrique ?

a. Démontrons que cette relation est réflexive, antisymétrique et transitive.
• Pour tout couple (a, b) de réels : (a, b) ⩽ (a, b) car a = a et b ⩽ b.

La relation est réflexive.
• Soit (a, b) et (a′, b′) deux couples de réels tels que (a, b) ⩽ (a′, b′) et (a′, b′) ⩽ (a, b).

Si a < a′ alors on n’a ni a′ = a ni a′ < a donc on ne peut avoir (a′, b′) ⩽ (a, b). Ainsi a = a′.
Comme (a, b) ⩽ (a, b′) et (a, b′) ⩽ (a, b) alors b ⩽ b′ et b′ ⩽ b, donc b = b′.
Finalement si (a, b) ⩽ (a′, b′) et (a′, b′) ⩽ (a, b) alors a = a′ et b = b′ donc (a, b) = (a′, b′).
La relation est antisymétrique.
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• Soit (a, b), (a′, b′) et (a′′, b′′) trois couples de réels tels que (a, b) ⩽ (a′, b′) et (a′, b′) ⩽ (a′′, b′′).
Si a < a′, comme a′ < a′′ ou a′ = a′′ alors a < a′′ donc (a, b) ⩽ (a′′, b′′).
Si a = a′ et a′ < a′′ alors a < a′′ donc (a, b) ⩽ (a′′, b′′).
Enfin si a = a′ et a′ = a′′ alors b ⩽ b′ et b′ ⩽ b′′ donc a = a′′ et b ⩽ b′′, puis (a, b) ⩽ (a′′, b′′).
On a démontré que si (a, b) ⩽ (a′, b′) et (a′, b′) ⩽ (a′′, b′′) alors (a, b) ⩽ (a′′, b′′).
La relation est transitive.

La relation ⩽ est réflexive, antisymétrique et transitive, donc c’est une relation d’ordre.
Cette relation d’ordre est totale. En effet, si (a, b) et (a′, b′) sont deux couples de réels alors :
• Si a < a′ alors (a, b) ⩽ (a′, b′).
• Si a′ < a alors (a′, b′) ⩽ (a, b).
• Si a = a′ alors b ⩽ b′ ou b′ ⩽ b, donc (a, b) ⩽ (a′, b′) ou (a′, b′) ⩽ (a, b).
On a donc dans tous les cas (a, b) ⩽ (a′, b′) ou (a′, b′) ⩽ (a, b), donc la relation d’ordre ⩽ est totale.

Ce nouvel ordre est appelé ordre lexicographique. C’est l’analogue de l’ordre alphabétique des mots du
dictionnaire, qui hérite de l’ordre des lettres de l’alphabet.

b. L’axe des abscisses n’est ni minoré ni majoré. En effet si (a, b) est un couple de réels alors le couple
(a − 1, 0) lui est inférieur et le couple (a + 1, 0) lui est supérieur, et ces deux couples appartiennent à
l’axe des abscisses.
Aucun couple (a, b) ne peut donc minorer ni majorer l’axe des abscisses, ce qui montre que celui-ci
n’est ni minoré ni majoré.

L’axe des ordonnées est borné. En effet il contient les couples de la forme (0, b), et :

∀b ∈ R (−1, 0) ⩽ (0, b) ⩽ (1, 0)

Ceci montre que (−1, 0) est un minorant de l’axe des ordonnées et (1, 0) en est un majorant.
Par contre l’axe des ordonnées ne possède pas de plus grand minorant ni de plus petit majorant.
Démontrons par exemple qu’il ne possède pas de plus petit majorant. Supposons que m = (a, b) est
un majorant de l’axe des ordonnées. Alors :

∀y ∈ R (0, y) ⩽ (a, b)

En particulier (0, b + 1) ⩽ (a, b), ce qui impose 0 < a. Alors le couple
(

a
2 , b
)

vérifie :

∀y ∈ R (0, y) ⩽
(

a
2 , b
)

< (a, b) = m

Ce couple et un majorant de l’axe des ordonnées, strictement plus petit que m. Ceci prouve que l’axe
des ordonnées ne possède pas de plus petit majorant.
On démontre de même qu’il ne possède pas de plus grand minorant.

Le cercle trigonométrique est borné, et il possède un plus grand minorant et un plus petit majorant.
En effet un couple (a, b) appartient au cercle trigonométrique si et seulement si a2 + b2 = 1. Ceci
impose −1 ⩽ a ⩽ 1, avec a = ±1 si et seulement si b = 0. Donc (−1, 0) ⩽ (a, b) ⩽ (1, 0).
Or les couples (−1, 0) et (1, 0) appartiennent au cercle trigonométrique. Ils sont donc respectivement
le plus grand minorant et le plus petit majorant du cercle trigonométrique.
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18 On suppose qu’il existe une relation d’ordre totale ⩽ sur C vérifiant les conditions :
• ⩽ généralise la relation d’ordre classique sur R, c’est-à-dire que sa restriction à R est la relation

d’ordre habituelle ⩽ sur R.
• ⩽ est compatible avec l’addition.
Démontrer qu’il est impossible que cette relation soit compatible avec la multiplication, i.e., vérifie :

∀(a, b, c) ∈ C3 0 ⩽ a et b ⩽ c =⇒ ab ⩽ ac

Supposons que : ∀(a, b, c) ∈ C3 0 ⩽ a et b ⩽ c =⇒ ab ⩽ ac.
Démontrons que i ne peut être ni supérieur ni inférieur à 0.
Si 0 ⩽ i : comme 0 ⩽ i et 0 ⩽ i alors 0 ⩽ −1.
Ceci contredit le fait que la relation ⩽ sur C généralise la relation ⩽ de R.
Si i ⩽ 0 alors par addition de −i : 0 ⩽ −i.
On en déduit de même que 0 ⩽ −1, c’est une contradiction.
Il n’existe donc pas de relation d’ordre totale sur C qui soit compatible à l’addition et à la multiplication
par les complexes positifs.

19 Par combien de zéros se termine 1000! ?

Le nombre 1000! est un entier, donc on peut le décomposer en facteurs premiers :

1000! =
n∏

i=1
pαi

i

où p1, . . . pn sont les nombres premiers, tous distincts, intervenant dans cette décomposition, et α1, . . . , αn

sont des entiers naturels strictement positifs.
On peut supposer que les nombres premiers p1, . . . , pn sont classés par ordre croissant. Alors les trois
premiers sont 2, 3 et 5 et :

1000! = 2α1 × 3α2 × 5α3 ×
n∏

i=4
pαi

i

En renommant α1 et α3 en a et b on obtient :

1000! = 2a × 5b × C avec C = 3α2 ×
n∏

i=4
pαi

i

L’entier C est produit de nombres premiers différents de 2 et 5, il ne peut donc être multiple de 10.
Le nombre 2 est plus fréquent que 5 dans la décomposition en facteurs premiers de 1000!, donc a ⩾ b et
on peut écrire :

1000! = 10b × 2a−b × C

Le nombre de zéros terminant l’écriture de 1000! est donc l’entier b.
C’est le nombre d’apparitions de 5 dans la décomposition de 1000! en facteurs premiers.

Ensuite on considère le développement de 1000! :

10000! = 1 × 2 × 3 × 4 × 5 × · · · × 1000

Ce nombre contient :
• 200 multiples de 5 (5, 10, 15, etc jusqu’à 1000 = 200 × 5),
• 40 multiples de 25 (25, 50, 75, etc jusqu’à 1000),
• 8 multiples de 125,
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• 1 multiples de 625.
Chaque multiple de 5 apporte un 5 dans la décomposition de 1000! en facteurs premiers. Chaque multiple
de 25 en apporte un de plus, etc. On a ainsi tous les 5 de la décomposition. On en déduit que b =
200 + 40 + 8 + 1 = 249.

Finalement 1000! se termine par 249 zéros.

Remarque. Une autre question est : combien de chiffres possède 1000! ?
On ne peut répondre sans recours à un ordinateur.
En effet le nombre de chiffres de 1000! est l’entier naturel n tel que :

10n−1 ⩽ 1000! < 10n

La fonction logarithme décimal est strictement croissante donc :

n − 1 ⩽ log(1000!) < n

Ceci montre que :
n − 1 = ⌊log(1000!)⌋

Or :

log(1000!) = log
(1000∏

k=1
k

)
=

1000∑
k=1

log k

Donc :

n = 1 +
⌊1000∑

k=1
log k

⌋
On exécute le programme :

from math import log
s=0 # Initialisation de la somme
for k in range(1,1001):

s=s+log(k,10) # logarithme decimal
n=int(1+s)
print("n =",n)

Il donne n = 2 568. Ainsi 1000! contient 2 568 chiffres.

On peut aussi déterminer l’écritude scientifique de 1000! grâce à l’instruction :

print(10**(s-n+1))

On en déduit que 1000! ≃ 4,024 × 102 567.
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20 Un anagramme d’un mot M est un mot composé des mêmes lettres que M .
Combien les mots bûche, tarte, galette et millefeuilles ont-ils d’anagrammes ?

Le nombre de permutations d’un ensemble à n éléments est n! donc le nombre d’anagrammes du mot
bûche est 5! = 120.

Pour les anagrammes du mot tarte le problème est différent, puisque deux lettres sont identiques. En
effet si on inverse les deux t alors le mot est inchangé.
Deux méthodes sont possibles.

Méthode 1.
On différencie les deux t : t1art2e

Le nombre d’anagrammes du mot t1art2e est alors 5! = 120.
Mais chaque permutation de l’ensemble t1t2 donne en fait le même mot, et on a 2! = 2 permutations de
l’ensemble t1t2. Donc le nombre d’anagrammes du mot tarte est 5!

2! = 60.

Méthode 2.
Pour former un anagramme du mot tarte on place d’abord les deux t. Le nombre de façons de choisir 2
places parmi les 5 places est

(5
2
)

= 5!
2!3! = 10.

Ensuite il reste trois places pour les trois autres lettres are. Le nombre de façons de placer ces trois lettres
sur les trois places est 3!, c’est le nombre de permutations de l’ensemble are.
Finalement le nombre d’anagrammes du mot tarte est

(5
2
)

× 3! = 10 × 6 = 60.
On retrouve bien le même résultat.

Les mot galette contient 7 lettres, dont deux t et deux e.
Par la première méthode on obtient 7!

2!2! anagrammes. Le nombre de permutations d’un ensemble à 7
éléments est 7!, mais on le divise par le nombre de permutations de l’ensemble des deux t et par le
nombre de permutations de l’ensemble des deux e.

Par la seconde méthode on obtient
(7

2
)(5

2
)
3! anagrammes. En effet le nombre de façons de choisir les places

pour les deux t est
(7

2
)
, puis le nombre de façons de choisir les places pour les deux e est

(5
2
)

car il ne
reste plus que 5 places, et ensuite on place les trois lettres restantes.
On vérifie que les deux résultats sont égaux :

(7
2
)(5

2
)
3! = 7!

2!5!
5!

2!3! 3! = 7!
2!2! .

Le mot millefeuilles contient 13 lettres dont 4 l, 3 e, 2 i et 4 lettres distinctes : mfus.
Par la première méthode on compte 13!

4!3!2! anagrammes.
Par la seconde on en compte

(13
4
)(9

3
)(6

2
)
4!.

On vérifie :
(13

4
)(9

3
)(6

2
)
4! = 13!

4!9!
9!

3!6!
6!

2!4! 4! = 13!
4!3!2! .

On peut remarquer que l’on obtient le même résultat si on place d’abord les i, puis les e, puis les l, ou
même dans un autre ordre.
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21 De combien de façons peut-on former deux équipes de 3 avec 6 personnes ?
Trois équipes de 3 avec 9 personnes ?

Méthode 1.
Il existe

(6
3
)

façons de choisir 3 personnes parmi 6.
Chacune donne une façon de former deux équipes de 3 avec 6 personnes, car les 3 personnes restantes
constituent la seconde équipe.
Mais chaque répartition en équipe est comptée deux fois. Par exemple la répartition ({abc} , {def}) est
identique à la répartition ({def} , {abc}).
Le nombre de façons de former deux équipes de 3 avec 6 personnes est donc 1

2
(6

3
)
.

Méthode 2.
Isolons le joueur a. Le nombre d’équipes le contenant est

(5
2
)

: il suffit de choisir 2 personnes parmi les 5
autres. L’autre équipe est alors constituée des 3 personnes restantes.
Toutes les possibilités sont comptabilisées ainsi car le joueur a est obligatoirement dans une équipe.
Le nombre de façons de former deux équipes de 3 avec 6 personnes est donc

(5
2
)
.

On vérifie que les deux méthodes donnent le même résultat :

1
2

(
6
3

)
= 6!

2 × 3! × 3! = 10 et
(

5
2

)
= 5!

2! × 3! = 10

Le nombre demandé est donc 10.

Pour le nombre de façons de former trois équipes de 3 avec 9 personnes on utilise encore les deux méthodes.

Selon la méthode 1 ce nombre est (9
3)(6

3)
3! .

En effet on a
(9

3
)

façons de choisir la première équipe, c’est le nombre de façons de choisir 3 personnes
parmi 9, puis

(6
3
)

façons de choisir une équipe de 3 avec les 6 personnes restantes.
On a obtenu trois équipes ordonnées, que l’on peut permuter de 3! façons. Chaque répartition en trois
équipes a été obtenue 3! fois, donc on divise le résultat par 3!.

Selon la méthode 2 on isole le joueur a. On a
(8

2
)

possibilités pour son équipe. Puis il reste 6 personnes.
D’après la question précédente on a

(5
2
)

façons de les répartir en deux équipes de 3. Le nombre attendu
est donc

(8
2
)(5

2
)
.

On vérifie :

1
3!

(
9
3

)(
6
3

)
= 9!6!

3!6!3!3!3! = 9 × 8 × 7 × 6 × 5 × 4
63 = 8 × 7 × 5 = 280

(
8
2

)(
5
2

)
= 8 × 7

2 × 5 × 4
2 = 280

On obtient bien le même résultat.
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22 Un domino contient deux chiffres compris entre 0 et 6. Un jeu de dominos contient tous les
dominos possibles, mais aucun en double.
a. Combien de dominos possède un jeu ?
b. Combien de paires de dominos ont au moins un numéro en commun ?
c. Combien de mains de sept dominos sont possibles au début du jeu ? Combien de ceux-ci contiennent

au moins un double ?

a. Il existe 7 dominos doubles : du double 0 au double 6.
Un domino simple contient 2 numéros distincts parmi 7, et évidemment on ne tient pas compte de
l’ordre : les dominos {5, 2} et {2, 5} sont identiques par exemple.
Il existe donc

(7
2
)

= 7×6
2 = 21 dominos simples.

Finalement un jeu contient 7 + 21 soit 28 dominos.
b. On compte le nombre de paires de dominos ayant un numéro en commun.

Méthode 1.
Ces paires ne peuvent contenir deux doubles, car il n’existe qu’un seul double de chaque numéro, et
donc deux doubles différents ne peuvent avoir un numéro commun.
On sépare les paires contenant un double de celles n’en contenant pas.
Il existe 7 doubles. Pour chacun il existe 6 dominos ayant un numéro en commun.
Par exemple avec le double 2 il existe les dominos (2, a) avec a différent de 2, donc 6 possibilités.
Ceci donne 7×6 paires de dominos ayant un numéro en commun dont l’un des dominos est un double.
On compte maintenant les paires sans double.
Pour le premier domino de la paire 21 choix sont possibles puisqu’il existe 21 dominos simples.
Ce domino est de la forme {a, b} avec a ̸= b. Il peut correspondre au second domino par le numéro a
ou par le numéro b, mais pas par les deux puisqu’il n’existe qu’un seul domino {a, b}.
Il existe 5 dominos qui correspondent au domino {a, b} par le numéro a, il s’agit des dominos {a, c}
où c est différent de b (car le domino {a, b} est unique) et de a (car le domino doit être simple). Ceci
fait 5 possibilités pour le c. De même 5 dominos correspondent par le numéro b.
Le nombre de couples de dominos simples ayant un numéro en commun est donc 21 × 5 + 5 = 210.
Mais il s’agit de couples ordonnés, par exemple on a compté le couple ({a, b} , {a, c}) et le couple
({a, c} , {a, b}). Chaque paire est comptabilisées deux fois.
Le nombre de paires de dominos simples ayant un numéro en commun est donc 210

2 = 105.
Au total on a donc 105 + 42 = 147 paires de dominos ayant un numéro en commun.
Méthode 2.
Une paire correspond par un numéro, lequel est unique et doit être choisi parmi les 7 numéros.
Ce numéro étant choisi il existe

(7
2
)

façons de choisir 2 dominos parmi les 7 qui contiennent ce numéro.
On a donc 7 ×

(7
2
)

paires de dominos ayant un numéro en commun.
Ceci donne 7 7×6

2 = 49 × 3 = 147 comme précédemment.
On peut ajouter que le nombre total de paires est

(28
2
)

= 14 × 27. Si on pioche deux dominos au
hasard alors par équiprobabilité la probabilité que les deux dominos aient un numéro en commun est
7×7×3
14×27 = 7

18 ≃ 0,3888.
c. Un jeu de 7 dominos est une partie à 7 éléments de l’ensemble de tous les dominos. Il existe

(28
7
)

telles
parties.
Parmi les 28 dominos, 7 sont doubles et 21 sont simples. Le nombre de jeux sans double est donc

(21
7
)
,

c’est le nombre de parties à 7 éléments de l’ensemble des 21 dominos simples.
Le nombre de jeux contenant au moins un double est donc

( 28
7
)

−
( 21

7
)
.

On peut en déduire que lorsqu’au début du jeu on pioche 7 dominos au hasard, la probabilité d’avoir
au moins un double dans son jeu est 1 − (21

7 )
(28

7 ) . Cette probabilité est égale à 1 − 19×17
23×13×11 ≃ 0,9018.
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23 Un tournoi de Tennis fait participer 2n joueurs, avec n ⩾ 1. On souhaite organiser n matchs où
chaque joueur en rencontre un autre.
Soit an le nombre de possibilités d’organisation.
a. En isolant le joueur 2n, justifier que an = (2n − 1)an−1 pour tout n ⩾ 2.
b. Calculer le terme général de an.

a. Le joueur numéro 2n doit rencontrer un joueur parmi les 2n − 1 autres joueurs, il a donc 2n − 1
possibilités de matchs. Il reste ensuite 2n − 2 soit 2(n − 1) joueurs, et le nombre d’organisations
possibles des matchs entre ces joueurs est an−1. Ceci montre que an = (2n − 1)an−1.

b. Si n = 1 alors on a deux joueurs, donc une seule organisation possible : un match unique, opposant
les deux joueurs. Ainsi a1 = 1.
Pour n = 2 la formule précédente donne a2 = 3a1, donc a2 = 3 × 1.
Pour n = 3 la formule précédente donne a3 = 5a2, donc a3 = 5 × 3 × 1.
On remarque que :

an = (2n − 1)an−1 = (2n − 1)(2n − 3)an−3 = · · · = (2n − 1)(2n − 3) · · · × 3 × 1

Ceci s’écrit, en ajoutant les nombres pairs dans le produit :

an = (2n)(2n − 1)(2n − 2) · · · × 2 × 1
(2n)(2n − 2) · · · × 4 × 2 = (2n)!

2nn!

On démontre cette formule par récurrence. Soit Pn : an = (2n)!
2nn!

Initialisation. Si n = 1 alors (2n)!
2nn! = 1. Nous avons vu que a1 = 1, donc la formule est vraie pour n = 1.

Hérédité. Supposons que pour un certain n ⩾ 2 la formule Pn−1 est vraie. D’après la question précé-
dente an = (2n − 1)an−1. Ceci donne :

an = (2n − 1) (2(n − 1))!
2n−1(n − 1)! = (2n − 1)(2n − 2)!

2n−1(n − 1)! × 2n

2n
= (2n)!

2nn!

La formule est bien valable au rang n, l’hérédité est démontrée.
Conclusion. Par récurrence, la formule est valable pour tout n ∈ N∗ :

∀n ∈ N∗ an = (2n)!
2nn!

Remarque. Pour vérification, on peut procéder autrement pour compter le nombre d’organisations pos-
sibles.
On classe tous les joueurs : ceci donne (2n)! permutations, et on fait jouer le premier avec le second, le
troisième avec le quatrième, etc.
Mais alors on peut permuter chaque couple, ceci ne change pas l’organisation. Ainsi on divise par 2n car
on a n matchs.
On obtient une liste ordonnées de n matchs, et comme on ne tient pas compte de l’ordre des matchs on
peut diviser le nombre de telles listes par n!, le nombre de permutations des n matchs.
Ceci donne (2n)!

2nn! organisations possibles, que l’on a comptées de la façon suivante :

Nombre de listes de la forme ((α, β), (γ, δ), . . .) : (2n)!

Nombre de listes de la forme ({α, β}, {γ, δ}, . . .) : (2n)!
2n

Nombre d’ensembles de la forme {{α, β}, {γ, δ}, . . .} : (2n)!
2nn!
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24 Soit E et F deux ensembles non-vides de cardinaux finis p et n. Calculer le nombre

a. d’applications de E dans F

b. de bijections de E dans F

c. d’injections de E dans F

d. de surjections de E dans F si n = 1 ou n = 2
e. de surjections de E dans F si n = 3.

a. On compte le nombre d’applications de E dans F .
Pour chacun des p éléments de E il existe n images possibles, chaque élément de F .
Il existe donc np applications possibles de E dans F .

b. On compte maintenant le nombre d’applications bijectives de E dans F .
Si f : E → F est une bijection alors tout élément de F admet un et un seul antécédent par f . Ceci
implique, dans le cas où E et F sont finis, que E et F ont autant d’éléments : p = n.
Ainsi, si p ̸= n alors il n’existe pas de bijection de E dans F .
On suppose maintenant que p = n.
Pour le premier élément de E il existe n images possibles. Le second ne doit pas avoir la même image
puisque l’application est bijective, donc il a n−1 images possibles. Le troisième a n−2 images possibles,
etc, jusqu’au dernier pour qui il reste une et une seul image possible.
Le nombre de bijections de E dans F s’ils sont de même cardinal est donc n!.
Effectivement, si on ordonne les éléments de E : E = {x1, . . . , xn} alors le choix d’une bijection de
E dans F revient à ordonner les éléments de F . Or les nombre de permutations d’un ensemble à n
éléments est bien n!.

c. On compte maintenant le nombre d’applications injectives de E dans F .
Si f : E → F est une injection alors tout élément de F admet au plus un antécédent par f . Ceci
implique, dans le cas où E et F sont finis, que F a plus d’éléments que E : n ⩾ p.
Ainsi, si n < p alors il n’existe pas d’injection de E dans F .
On suppose maintenant que p ⩽ n.
Pour le premier élément de E il existe n images possibles. Le second ne doit pas avoir la même image
puisque l’application est injective, donc il a n−1 images possibles. Le troisième a n−2 images possibles,
etc.
Finalement le nombre d’applications injectives de E dans F est :

n × (n − 1) × · · · × (n − (p − 1)) = n!
(n − p)!

d. Si n = 1 alors l’ensemble F possède un et un seul élément, que l’on note y : F = {y}.
Il existe donc une et une seule application de E dans F , c’est l’application constante égale à y. En
effet, les éléments de E ne peuvent être envoyés que sur y.
Comme y admet au moins un antécédent (car E est non-vide) alors l’unique application existant de E
dans F est surjective.
Ainsi, si F est de cardinal 1 alors il existe une et une seule application surjective de E dans F .

On suppose maintenant que F est de cardinal 2, et note y1 et y2 ses deux éléments : F = {y1, y2}.
Il est plus facile de compter le nombre d’applications non surjectives de E dans F .
En effet une application f : E → F n’est pas surjective si y1 ou y2 n’admet pas d’antécédent. Ceci
signifie que f est constante égale à y1 ou constante égale à y2.
Le nombre d’applications totale de E dans F est 2p d’après la question a, le nombre d’applications
non surjectives est 2 (les deux constantes), donc le nombre d’applications surjectives de E dans F est
2p − 2.

e. Si n = 3 alors le nombre d’applications de E dans F est 3p.
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On retire du compte les applications constantes, au nombre de 3, et les applications surjectives de E
dans un sous-ensemble de F à 2 éléments, qui sont au nombre de 3(2p − 2). En effet F a trois éléments
dont il admet

(3
2
)

= 3 parties à 2 éléments. Une telle partie étant choisie, il existe 2p − 2 surjections
de E dans cette partie d’après la question précédente.
Il reste alors les applications surjectives, elles sont donc au nombre de 3p − 3 × 2p + 3.
On remarque que ce nombre est nul si p = 1 ou p = 2. En effet si f : E → F est une surjection entre
deux ensembles finis alors le premier a plus d’éléments que le second.

La formule générale donnant le nombre de surjections d’un ensemble à p éléments dans un ensemble à
n éléments est :

Sp,n =


n∑

k=1
(−1)n−k

(
n
k

)
kp si p ⩾ n

0 sinon.

25 Soit n et p deux entiers naturels.

a. Combien existe-t-il de p-listes (x1, . . . , xp) d’entiers naturels tels que
0 ⩽ x1 < x2 < · · · < xp ⩽ n ?

b. Combien existe-t-il de listes strictement croissantes d’entiers naturels inférieurs ou égaux à n ?

On note Lc
p(n) l’ensemble des p-listes strictement croissantes d’entiers naturels compris entre 0 et n.

a. Soit Pp(n) l’ensemble des parties de {0, . . . , n} à p éléments. Alors les ensembles Lc
p(n) et Pp(n) sont

en bijection :
Lc

p(n) ∼−→ Pp(n)
(x1, . . . , xp) 7−→ {x1, . . . , xp}

On en déduit Card Lc
p(n) = CardPp(n) =

(
n+1

p

)
.

b. Soit Lc(n) l’ensemble des listes strictement croissantes d’entiers naturels compris entre 0 et n. Cet
ensemble peu être trié selon le nombre d’éléments des listes :

Lc(n) =
n+1⋃
p=0

Lc
p(n)

Cette union est disjointe, donc :

Card Lc(n) =
n+1∑
p=0

Card Lc
p(n) =

n+1∑
p=0

(
n + 1

p

)
= 2n+1
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26 Soit E un ensemble fini de cardinal n. On souhaite déterminer le cardinal de :

X =
{

(A, B) ∈ P(E)2 ∣∣ A ⊆ B
}

a. Justifier que
X =

⋃
B∈P(E)

{
(A, B) ∈ P(E)2 ∣∣ A ⊆ B

}
et que cette union est disjointe.

b. Justifier que : ∑
B∈P(E)

CardP(B) =
n∑

k=0

( ∑
B∈Pk(E)

CardP(B)
)

.

En déduire le cardinal de X.

a. Pour tout B ∈ P(E) notons XB =
{

(A, B) ∈ P(E)2
∣∣ A ⊆ B

}
.

Soit (A, B) un élément de X. Alors (A, B) ∈ XB . Ceci montre que X ⊆
⋃

B∈P(E)
XB .

Réciproquement, si (A, B) est un élément de
⋃

B∈P(E)
XB alors (A, B) ∈ X. Ceci montre que

⋃
B∈P(E)

XB ⊆ X.

Par double inclusion : X =
⋃

B∈P(E)

XB .

De plus si B et B′ sont deux parties différentes de E alors XB ∩XB′ = ∅. En effet, si un couple (A, C)
appartient à XB ∩ XB′ alors C = B et C = B′, ce qui contredit que fait que B soit différent de B′.
L’union X =

⋃
B∈P(E)

XB est donc disjointe.

Ceci montre que :
Card X =

∑
B∈P(E)

Card XB . (1)

b. Comme E est de cardinal n alors :
P(E) =

n⋃
k=0

Pk(E).

De plus cette union est disjointe, car le cardinal d’une partie de E est uniquement déterminé.
On en déduit : ∑

B∈P(E)

CardP(B) =
n∑

k=0

( ∑
B∈Pk(E)

CardP(B)
)

. (2)

La propriété utilisée ci-dessus est la suivante : si I est un ensemble d’indice, (xi)i∈I une famille de
réels, et (I0, . . . In) une partition de I, alors :

∑
i∈I

xi =
n∑

k=0

(∑
i∈Ik

xi

)
.

Démontrons que Card XB = CardP(B).
Soit B une partie de E. Alors l’application :

fB : XB −→ P(B)
(A, B) 7−→ A

est bien définie car si (A, B) ∈ XB alors A ⊆ B, i.e., A ∈ P(B).
De même l’application :

gB : P(B) −→ XB

A 7−→ (A, B)
est bien définie car si A ⊆ B alors (A, B) ∈ XB , par définition de XB .
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On constate que gB ◦ fB = IdXB
et fB ◦ gB = IdP(B), donc fB et gB sont bijectives, réciproques l’une

de l’autre.
On en déduit : Card XB = CardP(B).
Les égalités (1) et (2) donnent :

Card X =
n∑

k=0

( ∑
B∈Pk(E)

CardP(B)
)

.

Si Card B = k alors CardP(B) = 2k, donc :

Card X =
n∑

k=0

( ∑
B∈Pk(E)

2k
)

On calcule, grâce à la formule du binôme :

Card X =
n∑

k=0

(
CardPk(E) × 2k

)
=

n∑
k=0

(
n

k

)
2k = (2 + 1)n = 3n.

On peut comprendre ce résultat de la façon suivante : déterminer un couple (A, B) de parties de E tel
que A ⊆ B revient à déterminer, pour chaque élément de E, s’il est dans A, dans B \ A, ou ni dans A
ni dans B. Chacun des n éléments de E a alors trois possibilités, d’où 3n possibilités de couples (A, B)
tels que A ⊆ B.
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