Feuille de TD nº10 Équations différentielles et Intégration

Équations différentielles

1 QCM:

- 1. La fonction $x \mapsto 3e^x$ est solution de l'équation différentielle:
- (a) y' = 3y (b) y' = -3y (c) y' = -y (d) y' = y
- 2. La fonction $x \mapsto 5e^{-2x}$ est solution de l'équation différentielle:

- (a) y' = 2y (c) y' = 5y (d) y' = -5y
- 3. Une solution particulière de l'équation différentielle $y' + \frac{1}{2}y = 10$ est :

- 4. Une solution de l'équation différentielle y' = 2y + 2 est :
 - (a) $x \mapsto e^{-2x} + 1$ (b) $x \mapsto e^{-2x} 1$ (c) $x \mapsto e^{2x} + 1$ (d) $x \mapsto e^{2x} + 1$
- 5. La fonction $x \mapsto 2 e^{4x}$ est solution de l'équation différentielle:
 - (a) y'-4y=8(b) y'-2y=8(c) y'-8y=4(d) y'+4y=8
- 6. Une solution de l'équation différentielle y' - 3y = 0 est :

- 7. La solution de l'équation différentielle y' = -5yqui prend la valeur 1 en 0 est :
- (a) $x \mapsto e^{5x}$ (c) $x \mapsto e^x$ (b) $x \mapsto 1 e^{-5x}$ (d) $x \mapsto e^{-5x}$

2

1. Résoudre l'équation y'-2y=5

- 2. Déterminer la solution qui prend la valeur 0 en
- **3** soit (E) l'équation différentielle : $y' + 3y = e^{2x}$.
- 1. Déterminer le réel a tel que la fonction $p: x \mapsto$ p(x) définie sur \mathbb{R} par $p(x) = ae^{2x}$ soit une solution particulière de (E).
- 2. Résoudre sur \mathbb{R} l'équation (*E*).
- 3. Déterminer la solution de l'équation vérifiant que y(0) = 1.
- 4 On considère l'équation différentielle sur $[0; +\infty[$: (E): $y' = \frac{1}{20}y(10-y)$. Soit g une solution de (E) sur \mathbb{R}_+ qui ne s'annule pas.
 - 1. On considère une fonction y qui ne s'annule pas sur $[0; +\infty[$ et on pose $z = \frac{1}{v}$.
 - (a) Montrer que y est une solution de (E) si et seulement si z est solution de l'équation différentielle (E_1): $z' = -\frac{1}{2}z + \frac{1}{20}$
 - (b) Résoudre l'équation (E_1) et en déduire les solutions de l'équation (E).
 - 2. Montrer que g est définie sur $[0; +\infty[$ par : $g(x) = \frac{10}{9e^{-0.5x} + 1}$ est solution de l'équation (E).
 - 3. Étudier les variations de g sur $[0; +\infty[$.
 - 4. Calculer la limite de g en $+\infty$. Interpréter graphiquement le résultat.
 - 5. Résoudre l'inéquation $g(x) \ge 5$.

Fonction primitive

- 5 Dans chacun des cas suivants, montrer que la fonction F est une primitive de la fonction f sur \mathbb{R}
 - 1. $F(x) = 2x^4 5x^3 + 3x^2$, $f(x) = 8x^3 15x^2 + 6x$.
 - 2. $F(x) = 2(3x-1)^5$, $f(x) = 30(3x-1)^4$.
 - 3. $F(x) = \frac{1}{2} \ln(x^2 + 1)$, $f(x) = \frac{x}{x^2 + 1}$.
 - 4. $F(x) = \frac{x}{2e^x}$, $f(x) = \frac{1-x}{2e^x}$.
 - 5. $F(x) = \int_{0}^{x} e^{-\frac{t^2}{2}} dt$, $f(x) = e^{-\frac{x^2}{2}}$.
- **6** Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \ln(x)$.
 - 1. Montrer que la fonction F définie sur $]0; +\infty[$ par $F(x) = x \ln x - x$ est une primitive de f sur $]0; +\infty[.$
 - 2. En déduire l'ensemble des primitives de f sur $]0;+\infty[.$

3. Déterminer l'unique primitive H de f sur $]0; +\infty[$ telle que H(1)=2.

7 Dans chacun des cas suivants, déterminer une primitive aux fonctions proposées

1.
$$f_1(x) = 5x^6 - 2x^3 + 3x^2 + 7$$

2.
$$f_2(x) = -2x^8 + 7x^4 + x^3$$

3.
$$f_3(x) = x^7 + 2x^6 - 5x^2 - 1$$

4.
$$f_4(x) = \frac{3}{x^7} + \frac{1}{x^2} \text{ sur }]0; +\infty[$$

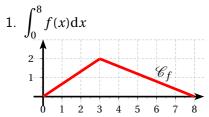
5.
$$f_5(x) = 3x^2(x^3 + 2)^4$$

6.
$$f_6(x) = \frac{-5}{(1-5x)^2} \text{ sur } \left[\frac{1}{5}; +\infty \right[.$$

7.
$$f_7(x) = \frac{x+1}{\sqrt{x^2+2x+2}}$$

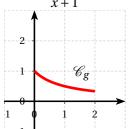
3 Intégrale d'une fonction continue positive sur un segment

8 Estimer dans chacun des cas suivants les intégrales.



2. Encadrer entre deux fractions $\int_0^2 g(x)dx$, où

 $g: x \mapsto \frac{1}{x+1}$ à l'aide de rectangles.



9 Calcul d'aire dans le cas d'une fonction positive :

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 7x + 10$.

- 1. Déterminer le signe de f sur \mathbb{R} .
- 2. Calculer l'aire sous la courbe de f sur [0; 2].

10 Calculer des intégrales à l'aide de primitives

1. Calculer les intégrales suivantes.

(a)
$$I = \int_0^1 \frac{1}{2x - 1} dx$$

(b)
$$J = \int_0^1 \frac{1}{(x+2)^3} dx$$

(c)
$$K = \int_0^1 5x e^{x^2} dx$$

- 2. (a) Démontrer que la fonction F définie sur \mathbb{R} par $F(x) = (-2x-3)e^{-x}$ est une primitive sur \mathbb{R} de f définie par $f(x) = (2x+1)e^{-x}$.
 - (b) En déduire la valeur de l'intégrale $A = \int_0^1 (2x+1)e^{-x} dx$.

11 Cas d'une fonction de signe non constant.

Soit g la fonction définie sur \mathbb{R} par $g(x) = x^3 - 7x -$

- 1. Montrer que -1 est une racine de g et en déduire une factorisation, puis l'ensemble des racines de g.
- 2. En déduire le signe de g(x) sur R.
- 3. Calculer l'aire entre la courbe de g et l'axe des abscisses sur l'intervalle [-2;3].

12 Calcul d'aire et étude de signe

On considère la fonction f définie sur [0; 5] par f(x) = x(x-2)(x-5).

Après avoir étudié le signe de f sur [0;5], déterminer l'aire située entre la courbe de f et l'axe des abscisses entre 0 et 5.

13 Propriétés de l'intégrale

On considère une fonction f dérivable sur $\mathbb R$ dont on connaît les variations :

- 1. Faire un dessin possible de la courbe de f, en faisant figurer tous les éléments du tableau de variations.
- 2. On définit g sur \mathbb{R} par $g(x) = \int_0^x f(t) dt$. Interpréter graphiquement g(2) et montrer que $0 \le g(2) \le 2,5$.
- 3. Soit $x \in \mathbb{R}$, tel que $x \ge 2$.
 - (a) Montrer que $\int_{2}^{x} f(t) dt \ge x 2$
 - (b) En déduire que $g(x) \ge x 2$.
 - (c) En déduire la limite de g quand x tend vers
- 4. Étudier le sens de variations de la fonction g sur
- 14 Pour tout entier naturel n, on considère le nombre $u_n = \int_0^1 \frac{e^{nt}}{1 + e^t} dt$.
 - 1. Calculer u_1
 - 2. Simplifier puis calculer $u_0 + u_1$.
 - 3. En déduire la valeur de u_0 .

4. Montrer que pour tout $n \in \mathbb{N}^*$,

$$u_n + u_{n+1} = \frac{\mathrm{e}^n - 1}{n}$$

- 5. Calculer les valeurs exactes de u_2 , u_3 et u_4 .
- 6. Démontrer que pour tout $n \in \mathbb{N}^*$, on a

$$u_{n+1} - u_n = \int_0^1 \frac{e^{nt}(e^t - 1)}{1 + e^t} dt$$

7. En déduire le sens de variation de la suite (u_n) .

4 Calculer des primitives

15 Calculer les intégrales suivantes :

1.
$$I = \int_{-1}^{0} \frac{3x}{x^2 + 4} dx$$

2.
$$J = \int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^2} dx$$

3.
$$K = \int_{e^2}^{e^3} \frac{1}{x(\ln(x))^5} dx$$

16

1. On souhaite calculer $I = \int_0^1 \frac{1}{e^x + 1} dx$. On pose

$$J = \int_0^1 \frac{\mathrm{e}^x}{\mathrm{e}^x + 1} \mathrm{d}x.$$

- (a) Calculer J.
- (b) Calculer I + J.
- (c) En déduire la valeur de I.
- 2. On souhaite calculer $a = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx$ et $a = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} dx$
 - (a) Calculer K + L
 - (b) Calculer K-L
 - (c) En déduire les valeurs de K et L.

17 Suite d'intégrales

On considère la suite (u_n) définie, pour tout $n \in \mathbb{N}$, par $u_n = \int_0^1 \frac{x^n}{1+x} dx$.

- 1. Démontrer que la suite (u_n) est décroissante.
- 2. Démontrer que, pour tout entier naturel n, $0 \le u_n \le \ln(2)$. Que peut-on en déduire pour la suite (u_n) ?
- 3. Démontrer que, pour tout $n \in \mathbb{N}$, $0 \leqslant u_n \leqslant \frac{1}{n+1}$. Que peut-on en déduire pour la suite (u_n) ?
- 18 Soit f une fonction définie sur \mathbb{R} par $f(x) = (1+x)e^{-x}$.
 - 1. (a) Étudier le signe de f(x) sur \mathbb{R} .

- (b) Déterminer les variations de la fonction f sur \mathbb{R} .
- (c) Tracer la courbe de la fonction f sur l'intervalle [-2;5].
- 2. On note (I_n) la suite définie, pour tout entier naturel n par $I_n = \int_1^n f(x) dx$.
 - (a) Montrer que pour tout $n \in \mathbb{N}^*$, $I_n \geqslant 0$.
 - (b) Montrer que la suite (I_n) est croissante.
- 3. On considère la fonction F définie sur \mathbb{R} par $F(x) = (\alpha x + \beta)e^{-x}$, où α et β sont deux réels.
 - (a) Déterminer les réels α et β tels que F soit une primitive de f sur \mathbb{R} .
 - (b) En déduire une expression de I_n en fonction de n.
 - (c) Déterminer la limite de la suite (I_n) . Donner une interprétation graphique de cette limite.

19 $\forall n \in \mathbb{N}$, on définit la fonction f_n pour tout réel $x \in [0; 1]$ par $f_n(x) = x + e^{n(x-1)}$.

- 1. Quelques propriétés des f_n .
 - (a) Démontrer que pour tout entier naturel n, f_n est croissante sur [0;1].
 - (b) Démontrer que pour tout $n \in \mathbb{N}$, $f_n(1) = 2$.
- 2. Aires sous les courbes.

On appelle A_n l'aire située entre la courbe \mathscr{C}_n de la fonction f_n et l'axe des abscisses entre 0 et 1.

- (a) Déterminer une expression de A_n en fonction de n.
- (b) Déterminer la limite de (A_n) en fonction de n.

20 Intégration par parties

Calculer les intégrales suivantes en utilisant une intégration par parties.

1.
$$I_1 = \int_1^2 \frac{\ln(x)}{x} dx$$

2.
$$I_2 = \int_0^{10} (2t - 1)e^{-t} dt$$

3.
$$I_3 = \int_{-1}^{0} (4-3t)e^{3t+1}dt$$

4.
$$I_4 = \int_{-\pi}^{\pi} (3t - 2) \sin(t) dt$$

5.
$$I_5 = \int_{-2\pi}^{\frac{\pi}{2}} 2x \cos(x) dx$$

1 Équations différentielles

2

$$1. \left\{ x \mapsto k e^{2x} - \frac{5}{2} \right\}$$

2.
$$k = \frac{5}{2}$$
.

3

1.
$$p$$
 est solution de (E) si et seulement si $2a + 3a = 1 \iff a = \frac{1}{5}$, ainsi $p(x) = \frac{1}{5}e^{2x}$

2. Équation homogène : y' + 3y = 0.

$$\mathcal{S}_H = \{ x \mapsto k \mathrm{e}^{-3x} \mid k \in \mathbb{R} \}$$

Donc solution générale :

$$\mathscr{S}_H = \{ x \mapsto k e^{-3x} + \frac{1}{5} e^{2x} \mid k \in \mathbb{R} \}$$

3. On cherche donc le $k \in \mathbb{R}$ pour lequel

$$f_k(0) = 1 \iff ke^0 + \frac{1}{5}e^0 = 1 \iff k = \frac{4}{5}$$

4

2 Fonction primitive

6 Toutes les primitives s'écrivent sous la forme F + k, où $k \in \mathbb{R}$.

$$H(1) = 2$$
 et $H(x) = x \ln(x) - x + k$, donc $H(1) = -1 + k = 2 \iff k = 3$, ainsi, $H(x) = x \ln(x) - x + 3$

7

3 Intégrale d'une fonction continue positive sur un segment

8

1. 8u.a.

$$2. \quad \frac{5}{6} \leqslant \int_0^2 f(x) dx \leqslant \frac{3}{2}$$

1. (a)
$$I = \frac{1}{2} \ln(3)$$

(b)
$$J = \frac{5}{72}$$

(c)
$$K = \frac{5}{2}(e-1)$$

2. a. en dérivant
$$F$$
. b. $A = 3 - \frac{5}{e}$.

х	0		2		5
f(x)	0	+	0	_	0

On en déduit que l'aire entre la courbe et l'axe des abscisses sur [0; 5] est :

$$\mathscr{A} = \int_0^2 f(x) dx - \int_2^5 f(x) dx$$

Avec $f(x) = x^3 - 7x^2 + 10x$. Ainsi

$$\mathscr{A} = \left[\frac{x^4}{4} - \frac{7}{3}x^3 + 5x^2\right]_0^2 - \left[\frac{x^4}{4} - \frac{7}{3}x^3 + 5x^2\right]_2^5 \approx 21,083 \,\text{u.a.}$$

13

Calculer des primitives

16
$$I = 1 + \ln 2 - \ln(e+1)$$
, $K = L = \frac{\pi}{4}$

17 Tout l'exercice repose sur l'idée que $0 \le x \le 1$. Par conséquent, par exemple, $x^{n+1} \le x^n$. Pour les questions d'encadrement, on utilise la croissance (ou positivité) de l'intégrale.

- 1. $f(x) = (1+x)e^{-x}$
 - (a) $f \geqslant 0 \iff x \in [-1; +\infty[$
 - (b) $f'(x) = -xe^{-x}$, donc f croissante sur $]-\infty;0]$ et décroissante sur $[0;+\infty[$.
 - (c) tracé sur calculatrice.
- 2. (a) Soit $n \in \mathbb{N}^*$, $\forall x \in [1; n]$, $f(x) \ge 0$, donc par positivité de l'intégrale, $\int_1^n f(x) dx \ge 0$
 - (b) $I_{n+1} I_n = \int_n^{n+1} f(x) dx$, par positivité de l'intégrale, $I_{n+1} I_n \ge 0$, donc la suite est bien croissante.
- 3. (a) En raisonnant par identification, en dérivant F, $\alpha=-1$, $\beta=-2$.
 - (b) D'après le théorème fondamental de l'intégration, $I_n = \int_1^n f(x) dx = F(n) F(1) = 2e^{-n} ne^{-n} + 3e^{-1}$. D'après le théorème de croissances comparées $\lim_{n \to +\infty} n e^{-n} = 0$, donc $\lim_{n \to +\infty} I_n = \frac{3}{e}$. L'aire sous la courbe de f quand $x \geqslant 1$ est finie et vaut un peu plus d'une unité d'aire.