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MPSI – Mathématiques

Corrigé partiel du T. D. A7
Équations différentielles

1 Résoudre les équations différentielles suivantes, d’inconnue y, fonction de la variable
réelle t.
a. y′ + 3y = 3t2/e3t b. y′ + y = cos t + sin t avec y(0) = −1

c. y′ − (t + 1)y = t3 + 4 d. 3y′ + 8y = sin 2t

e. (t2 + 1)y′ + ty = 3t3 f. (1 + e−t)y′ − y = 1 avec y(0) = 3

g. y′ − 3t
t2+1y =

√
t2 + 1 − t + 2t2−1

t2+1 h. y′ − y = 1
1+e2t avec y(0) = π

4

Pour la dernière on pourra utiliser le changement de variable u = et.

a. Variation de la constante y(t) = (t3 + λ)e−3t

b. Solution évidente y(t) = sin t − e−t

c. Solution polynomiale y(t) = −t2 + t − 3 + λe(t+1)2/2

d. Solution trigonométrique y(t) = λe−8t/3 − 3
50 cos 2t + 4

50 sin 2t

e. Solution polynomiale y(t) = t2 − 2 + λ√
t2+1

f. Solution évidente y(t) = λ(et + 1) − 1 avec λ = 2, donc y(t) = 2et + 1
g. Variation de la constante et solution polynomiale

y(t) = (λ + arctan t)(1 + t2) 3
2 + t2 − t + 1

h. Variation de la constante et changement de variable u = et

y(t) = et(arctan e−t) − 1 + λet où λ = 1.
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2 Résoudre les équations différentielles suivantes, d’inconnue y, fonction de la variable
réelle t définie sur l’ensemble D précisé.
a. D = R∗

+ ty′ − y = t2 sin t

b. D = ]−1, 1[ (1 − t2)y′ + 2ty = t avec y(0) = 0

c. D = R∗
+ ty′ − 3y = (t + 1)(t − 3)

d. D = ]0, 1[ ty′ ln t = (ln t + 1)y

e. D = ]0, 2[ t(t − 2)y′ − 2y = (t − 1)(t − 3) avec y(1) = 4

f. D =
]
0, π

2

[
cos t sin t y′ + (sin2 t − cos2 t)y = cos3 t avec y(π

6 ) =
√

3

g. D = R∗
+ 2t(

√
t + 1)y′ − (2

√
t + 1)y = 0.

a. Variation de la constante y(t) = (λ − cos t)t
b. Solution évidente y(t) = 1

2 + λ(1 − t2) puis y(t) = 1
2t2

c. Solution polynomiale y(t) = λt3 − t2 + t + 1
d. y(t) = λt ln t

e. Solution polynomiale y(t) = λ2−t
t

+ t − 2 + 1
t

avec λ = 4, donc y(t) = (t−3)2

t

f. Solution évidente y(t) = cos t(λ sin t − 1) avec λ = 6
g. Changement de variable u =

√
t

y(t) = λ(t +
√

t)

3 Résoudre les équations différentielles suivantes sur le plus grand intervalle possible
contenant 0, avec la condition initiale y(0) = 1.
a. cos(t)y′ + sin(t)y = 1 b. cos(t)y′ − sin(t)y = 1

c. ch(t)y′ − sh(t)y = th t d. (t + 1)2y′ − (t2 − 1)y = t2 − t − 1.

a. Sur
]
−π

2 , π
2

[
Solution évidente y(t) = λ ch t − 1

2 ch2 t
avec λ = 1

b. Sur
]
−π

2 , π
2

[
Variation de la constante y(t) = t+λ

cos t
avec λ = 1

c. Sur R Variation de la constante y(t) = λ ch t − 1
2 ch2 t

avec λ = 3
2

d. Sur ]−1, +∞[ Variation de la constante λ et

(t+1)2 − t
t+1 avec λ = 1.
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4 Résoudre sur R∗
+ l’équation :

y + ln(ty′ + 1) = t

avec y(1) = 1, en posant z = ey.

Soit z(t) = ey(t). Comme y est supposée dérivable alors z l’est aussi par composition.
De plus y(t) = ln z(t) et donc : ∀t ∈ R∗

+ y′(t) = z′(t)
z(t)

On en déduit les équivalences suivantes :

y(t) + ln (ty′(t) + 1) = t ⇐⇒ ln z(t) + ln
(

t
z′(t)
z(t) + 1

)
= ln et

⇐⇒ tz′(t) + z(t) = et

⇐⇒ z′(t) + 1
t
z(t) = et

t

La dernière équivalence est valide car on suppose que t ∈ R∗
+, donc il est non-nul.

Contrairement à l’équation de départ, cette équation est linéaire.
Comme R∗

+ est un intervalle, et t 7→ − ln t est une primitive de t 7→ −1
t
, alors les solutions

de l’équation homogène associée sont les fonctions :

z0 : R∗
+ −→ R

t 7−→ λe− ln t = λ
t

avec λ ∈ R

La méthode de variation de la constante nous fournit la solution particulière z1 : t 7→ et

t
.

Ainsi les solutions de l’équation d’inconnue z sont les fonctions z = z0 + z1, à savoir :

z(t) = λ + et

t
avec λ ∈ R

Comme y(t) = ln z(t) alors les solutions de l’équation de départ sont les fonctions telles
que

∀t ∈ R∗
+ y(t) = ln

(
λ + et

)
− ln t avec λ ∈ R

La condition initiale y(1) = 1 donne ln (λ + e) = 1 donc λ = 0.
Finalement la solution de l’équation proposée munie de sa condition initiale est :

y(t) = t − ln t
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5 Soit I =
]
−π

2 , π
2

[
. Démontrer qu’il existe une unique fonction dérivable f de I dans

R telle que :
f(0) = 1 et ∀t ∈ I f ′(t) = f(t)

cos t

La calculer grâce au changement de variable u = sin x.

La condition demandée signifie que f est solution sur I de l’équation différentielle :

y′ − 1
cos t

y = 0 (1)

Il s’agit du problème de Cauchy : I est un intervalle, la fonction t 7→ 1
cos t

est définie et
continue sur cet intervalle, et la condition initiale est du type y(t0) = y0 avec t0 ∈ I et
y0 ∈ R.
Ainsi cette équation différentielle munie de sa condition initiale admet une et une seule
solution.
Pour la déterminer il faut résoudre l’équation différentielle.
Celle-ci est homogène. On note a(t) = 1

cos t
pour tout t ∈ I, puis on pose :

∀t ∈ I A(t) =
∫ t

0

du

cos u

La fonction a est continue et I est un intervalle donc le théorème fondamental montre
que A est une primitive de a.
La fonction u 7→ sin u est de classe C1. En posant x = sin u on obtient dx

du
= cos u, donc

dx = cos u du. En appliquant le changement de variable il vient :

A(t) =
∫ t

0

cos u du

1 − sin2 u
=
∫ sin t

0

dx

1 − x2

On décompose en éléments simples :

1
1 − x2 = 1

2

( 1
1 + x

+ 1
1 − x

)
et on en déduit

∀t ∈ I A(t) = 1
2 ln 1 + sin t

1 − sin t

On remarque que pour tout t ∈ I :

A(t) = 1
2 ln 1 − sin2 t

(1 − sin t)2 = ln

√√√√ cos2 t

(1 − sin t)2 = ln cos t

1 − sin t

Ceci car cos t et (1 − sin t) sont positifs sur I.
Finalement les solutions de l’équation (1) sont les fonctions

y0 : I −→ R

t 7−→ λeA(t) = λ cos t
1−sin t

(λ ∈ R)
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La condition initiale f(0) = 1 donne λ = 1, et donc la fonction recherchée est :

f(t) = cos t

1 − sin t

Cette fonction s’écrit aussi f(t) = 1+sin t
cos t

.

6 Déterminer l’ensemble de toutes les fonctions de R∗
+ dans R dérivables telles que :

∀(x, y) ∈ (R∗
+)2 f(xy) = f(x) + f(y)

On note P la propriété : ∀(x, y) ∈ (R∗
+)2 f(xy) = f(x) + f(y)

La fonction f est dérivable, donc pour composition, pour tout y ∈ R∗
+ la fonction x 7→

f(xy) est dérivable, et sa dérivée est x 7→ yf ′(xy). Si la propriété P est vraie alors par
dérivation par rapport à x elle implique :

∀(x, y) ∈ (R∗
+)2 yf ′(xy) = f ′(x)

Cette relation est vraie a fortiori si y = 1
x
, ce qui donne :

∀x ∈ R∗
+

1
x

f ′(1) = f ′(x)

Posons a = f ′(1). Alors : ∀x ∈ R∗
+ f ′(x) = a

x

Comme R∗
+ est un intervalle alors par primitivation il existe un réel b tel que

∀x ∈ R∗
+ f(x) = a ln x + b

Cette phase d’analyse nous a montré que si une fonction f : R∗
+ → R dérivable vérifie la

propriété P alors il existe deux réels a et b tels que : ∀x ∈ R∗
+ f(x) = a ln x + b.

Dans ce cas la propriété P s’écrit :

∀(x, y) ∈ (R∗
+)2 a ln(xy) + b = a ln x + b + a ln y + b

Ceci donne b = 0.
Cette phase de synthèse nous montre que l’ensemble des fonctions f : R∗

+ → R dérivables
vérifiant la propriété P est l’ensemble des fonctions f : x 7→ a ln x, où a est un réel.
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7 Déterminer l’ensemble de toutes les fonctions f de R dans R dérivables telles que :

∀x ∈ R (1 + x2)f(x) −
∫ x

0
tf(t) dt = 1

Analyse :
Soit f une fonction solution.
Posons g(x) = xf(x). Alors g est continue et la fonction x 7→

∫ x

0
tf(t) dt en est une

primitive, d’après le théorème fondamental. Elle est donc dérivable, de dérivée g.
Par hypothèse la fonction f vérifie :

∀x ∈ R (1 + x2)f(x) −
∫ x

0
tf(t) dt = 1.

Par dérivation :
∀x ∈ R 2xf(x) + (1 + x2)f ′(x) − xf(x) = 0.

Donc :
∀x ∈ R (1 + x2)f(x) + xf(x) = 0.

Ceci montre que f est solution de l’équation différentielle :

(1 + x2)y′ + xy = 0.

En posant a(x) = − x
1+x2 et A(x) = −1

2 ln(1 + x2) on justifie qu’il existe λ ∈ R tel que :

∀x ∈ R f(x) = λ√
1 + x2

.

Synthèse :
Soit fx 7→ λ√

1+x2 où λ est un réel.
On calcule :

∀x ∈ R (1 + x2)f(x) −
∫ x

0
tf(t) dt = λ.

On en déduit que f est solution du problème si et seulement si λ = 1.
Finalement la seule solution du problème est la fonction f : x 7→ 1√

1+x2 .
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8 Résoudre les équations différentielles suivantes, d’inconnue y, fonction de la variable
réelle t.
a. y′′ − 8y′ + 25y = 40e3t

b. y′′ − 3y′ − 4y = 6et + 10e4t

c. 1
2y′′ − y′ + y = t2

d. 4y′′ − y = 3 ch t avec y(0) = y′(0) = 1
e. y′′ − 2y′ + y = 1 avec y(0) = y′(0) = 0
f. y′′ + 4y′ + 4y = 4 ch 2t avec y(0) = y′(0) = 0
g. y′′ − 5y′ + 6y = e3t avec y(0) = −1 et y′(0) = −3

a. y(t) = αe(4+3i)t + βe(4−3i)t + 4e3t b. y(t) = (2t + α)e4t + βe−t − et

c. y(t) = αe(1+i)t + βe(1−i)t + (t + 1)2 d. y(t) = 2 sh t
2 + ch t

e. y(t) = 1 + (t − 1)et f. y(t) = (t2 − 1
2t − 1

8)e−2t + 1
8e2t

g. y(t) = e2t + (t − 2)e3t

9 Résoudre les équations différentielles suivantes, d’inconnue y, fonction réelle de la
variable réelle t.
a. y′′ + 4y′ + 5y = e−2t avec y(0) = 1 et y′(0) = −1
b. y′′ + y = 2 sh t avec y(0) = 0 et y′(0) = 2
c. y′′ + 4y = 4 cos(2t) avec y(0) = 4 et y′(0) = 0
d. y′′ − 7y′ + 10y = 13 sin t

e. y′′ + 2y = 2 avec y(0) = 4 et y′(0) = 0
f. 1

4y′′ − y′ + y = cos 2t avec y(0) = y′(0) = 0
g. y′′ + y = 2 sin2 t

h. 1
2y′′ + y′ + 5y = cos 3t − 6 sin 3t avec y(0) = 4 et y′(0) = −2

i. y′′ − 6y′ + 8y = 16t2

j. y′′ − 2y′ − 3y = e−t cos t

a. y(t) = (1 + sin t)e−2t b. y(t) = sin t + sh t

c. y(t) = 4 cos 2t + t sin(2t) d. y(t) = αe2t + βe5t + 7
10 cos t + 9

10 sin t

e. y(t) = 1 + 3 cos
√

2t f. y(t) = te2t − 1
2 sin 2t

g. y(t) = A cos t + B sin t + 1 + 1
3 cos(2t) h. y(t) = 2(1 + e−t) cos 3t

i. y(t) = αe2t + βe4t + 2t2 + 3t + 7
4 j. y(t) = αe−t + βe3t − e−t

17 (cos t + 4 sin t)
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10 Déterminer l’ensemble des fonctions réelles f deux fois dérivables sur R telles que

∀x ∈ R f ′(x) = f(−x)

Notons P la propriété ; ∀x ∈ R f ′(x) = f(−x)
Soit f une fonction deux fois dérivable vérifiant cette propriété. Alors par dérivation :

∀x ∈ R f ′′(x) = −f ′(−x)

Or la propriété P est valable pour tout x ∈ R, si x appartient à R alors −x appartient à
R, donc on peut substituer −x à x :

∀x ∈ R f ′(−x) = −f(x)

Ainsi on en déduit
∀x ∈ R f ′′(x) = −f(x)

Ceci montre que f est solution de l’équation différentielle y′′ − y = 0.
Or les solutions de cette équation différentielle sont les fonctions

R −→ R

t 7−→ A cos t + B sin t où (A, B) ∈ R2

Ainsi, si une fonction f : R → R deux fois dérivable vérifie la propriété P alors elle est
de la forme f(x) = A cos x + B sin x où A et B sont deux constantes réelles.
Mais dans ce cas la condition P s’écrit :

∀x ∈ R −A sin x + B cos x = A cos x − B sin x

⇐⇒ ∀x ∈ R (B − A)(cos x − sin x) = 0

Ceci équivaut à l’égalité A = B.
Ainsi l’ensemble des fonctions f : R → R deux fois dérivables vérifiant la propriété P est
l’ensemble des fonctions f : x 7→ A(cos x + sin x), où A est un réel.
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11 Résoudre le système différentiel :
{

x′(t) = 2x(t) − 2y(t)
y′(t) = 2x(t) − 3y(t)

d’inconnues x et y, fonctions de t, vérifiant les conditions initiales x(0) = 3 et y(0) = 0.

Après manipulation on obtient que la fonction x vérifie :

x′′ + x′ − 2x = 0.

On en déduit x(t) = αet + βe−2t avec (α, β) ∈ R2, puis y(t) = α
2 et + 2βe−2t.

Les conditions initiales donnent : x(t) = 4et − e−2t et y(t) = 2et + 2e−2t.

12 Résoudre l’équation différentielle

y′′′ − 2y′′ − 4y′ + 8y = 0

munie des conditions initiales y(0) = 1, y′(0) = 1 et y′′(0) = 8.

On remarque que l’équation différentielle proposée s’écrit :

(y′ − 2y)′′ − 4(y′ − 2y) = 0

On pose z = y′ − 2y. Alors y est solution de l’équation proposée si et seulement si z est
solution de l’équation :

z′′ − 4z = 0

Les solutions de cette équation différentielle du second ordre sont les fonctions z : t 7→
αe2t + βe−2t, où α et β sont deux réels.
De plus les conditions initiales sur y donnent les conditions initiales sur z :

z(0) = y′(0) − 2y(0) = −1 et z′(0) = y′′(0) − 2y′(0) = 6

Comme z(t) = αe2t + βe−2t alors z′(t) = 2αe2t − 2βe−2t. Les conditions initiales sur z
donnent : {

z(0) = −1
z′(0) = 6 ⇐⇒

{
α + β = −1

2α − 2β = 6

On en déduit α = 1 et β = −2, et donc z(t) = e2t − 2e−2t.
Or par définition z = y′ − 2y, donc on calcule y en résolvant l’équation différentielle du
premier ordre :

(E) y′ − 2y = e2t − 2e−2t

Les solutions de l’équation homogène associée sont les fonction y0 : t 7→ λe2t où λ est un
réel. Ceci par on résout cette équation sur l’intervalle R et car la fonction t 7→ 2t est une
primitive de la fonction t 7→ 2.
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Pour déterminer une solution particulière de l’équation (E) on définit les deux équations
suivantes :

(E1) y′ − 2y = e2t (E2) y′ − 2y = −2e−2t

On obtient les solutions particulières respectives y1(t) = te2t et y2(t) = 1
2e−2t.

D’après le principe de superposition la fonction y3 = y1 + y2 est solution de l’équation
(E), puis les fonctions y = y0 + y3 sont les solutions de l’équation (E). On obtient :

∀t ∈ R y(t) = (t + λ)e2t + 1
2e−2t où λ ∈ R

La condition initiale y(0) = 1 montre que λ = 1
2 . Finalement la solution de l’équation de

départ munie de ses conditions initiales est :

y(t) =
(

t + 1
2

)
e2t + 1

2e−2t = te2t + ch(2t)

Remarque : Il est possible aussi de résoudre cet exercice en posant z = y′′ − 4y.

13 Résoudre sur R∗
+ l’équation différentielle :

t3y′′ − 2ty = 6

munie des conditions initiales y(1) = y′(1) = −1.
On posera z(x) = y(ex).

On montre que y est solution si et seulement si z est solution de l’équation :

z′′ − z′ − 2z = 6e−x

Ceci donne z(x) = (α − 2x)e−x + βe2x où (α, β) ∈ R2.
On en déduit y(t) = α+ln t

t
+ βt2.

Avec les conditions initiales : y(t) = −1+2 ln t
t

page 10/10


