Devoir surveillé n° 6

Corrigé

Exercice 1.

- 1. (a) La fonction f_n est le produit de la fonction $x \mapsto e^{-x}$ par la fonction polynomiale S_n , qui sont toutes deux usuellement définies et dérivables sur \mathbb{R} . Donc la fonction f_n est définie et dérivable sur \mathbb{R} .
 - (b) Soit $x \in \mathbb{R}$. D'après la formule de Leibniz : $f'(x) = -e^{-x}S_n(x) + e^{-x}S_n'(x)$. Or :

$$S'_n(x) = \sum_{k=1}^n \frac{kx^{k-1}}{k!} = S_{n-1}(x),$$

donc on a bien : $f'_n(x) = e^{-x} (S_{n-1}(x) - S_n(x))$. Par télescopage : $S_{n-1}(x) - S_n(x) = -\frac{x^n}{n!}$, donc : $f'_n(x) = -\frac{x^n e^{-x}}{n!}$.

2. (a) Ce résultat est vrai par croissances comparées. On peut le retrouver : Notons k la partie entière de r. Soit $n \in \mathbb{N}^*$, on a :

$$0 \le \frac{r^n}{(n-1)!} = r \times \frac{r}{1} \times \frac{r}{2} \times \dots \times \frac{r}{k} \times \frac{r}{k+1} \times \frac{r}{n-1}$$
$$\le R \times \left(\frac{r}{k+1}\right)^{n-1-k},$$

où $R = r \times \frac{r}{1} \times \frac{r}{2} \times \dots \times \frac{r}{k}$ est une constante, et $\frac{r}{k+1} < 1$, donc $\left(\frac{r}{k+1}\right)^{n-1-k} \xrightarrow[n \to +\infty]{} 0$. Donc, par encadrement, $\frac{r^n}{(n-1)!} \xrightarrow[n \to +\infty]{} 0$.

- (b) Soit $n \in \mathbb{N}$. D'après la question 1.(b) : $|f_n'(x)| = \frac{x^n e^{-x}}{n!} \le e^r \frac{r^n}{n!} = e^r \frac{r^n}{(n-1)!} \times \frac{1}{n}$. Or, d'après la question précédente, $e^r \frac{r^n}{(n-1)!} \xrightarrow[n \to +\infty]{} e^r \times 0 = 0$, donc il existe $N \in \mathbb{N}$ tel que : $\forall n \ge N, \ e^r \frac{r^n}{(n-1)!} \le 1$. On a alors : $\forall n \ge N, \ |f_n'(x)| \le \frac{1}{n}$.
- (c) Soit $n \ge N$. Comme f_n est dérivable sur [0, x], et que f'_n est bornée par $\frac{1}{n}$ sur cet intervalle, on peut appliquer l'inégalité des accroissements finis :

$$|f_n(x) - f_n(0)| \le \frac{1}{n}|x - 0| \le \frac{r}{n},$$

c'est-à-dire : $\left| \frac{S_n(x)}{e^x} - 1 \right| \leq \frac{r}{n}$. Comme $\frac{r}{n} \underset{n \to +\infty}{\longrightarrow} 0$, on a donc par encadrement : $\frac{S_n(x)}{e^x} - 1 \underset{n \to +\infty}{\longrightarrow} 0$, c'est-à-dire : $S_n(x) \underset{n \to +\infty}{\longrightarrow} e^x$.

Exercice 2.

1. (a) D'après les propriétés du degré : $\deg(Q) \leq \max(\deg(BA'), \deg(B'A))$, où :

$$\deg(BA') = \deg(B) + \deg(A') = \deg(B) + \deg(A) - 1 = \deg(B'A).$$

Donc $deg(Q) \le deg(A) + deg(B) - 1$.

(b) Comme C = A + B, on a directement :

•
$$BC' - B'C = B(A' + B') - B'(A + B) = BA' - B'A = Q$$
,

•
$$CA' - C'A = (A+B)A' - (A'+B')A = BA' - B'A = Q.$$

On a donc, d'après (a) : $\deg(Q) \le \deg(B) + \deg(C) - 1$ et $\deg(Q) \le \deg(A) + \deg(C) - 1$. Par conséquent :

$$\deg(Q) \le S - 1 - \deg(A), \quad \deg(Q) \le S - 1 - \deg(B) \quad \text{et} \quad \deg(Q) \le S - 1 - \deg(C),$$

donc:

$$\deg(Q) \le S - 1 - \max(\deg(A), \deg(B), \deg(C)).$$

- 2. (a) Notons $m=\mu_A(z)$. Comme z est une racine de A de multiplicité m, c'est une racine de A' de multiplicité m-1; c'est-à-dire que $(X-z)^m$ divise A et $(X-z)^{m-1}$ divise A', donc, comme Q=AB'-A'B, $(X-z)^{m-1}$ divise Q. Donc $\mu_Q(z)\geq m-1$. En particulier, si m>1, alors $\mu_Q(z)>0$, donc $z\in R(Q)$, donc $z\in R(A)\cap R(Q)$. Réciproquement, si $z\in R(Q)$, alors z est racine de A'B=AB'-Q; or $z\notin R(B)$ puisque R(A) et R(B) sont disjoints, donc z est racine de A'. Donc $\mu_{A'}(z)=\mu_A(z)-1>0$.
 - (b) Remarquons tout d'abord que l'inégalité précédente est également vraie pour B et C. De plus, d'après le théorème de d'Alembert-Gauss : $\deg(Q) = \sum_{z \in B(Q)} \mu_Q(z)$.

Comme R(A), R(B) et R(C) sont deux à deux disjoints, on a alors :

$$\deg(Q) \geq \sum_{z \in R(Q) \cap R(A)} \mu_Q(z) + \sum_{z \in R(Q) \cap R(B)} \mu_Q(z) + \sum_{z \in R(Q) \cap R(C)} \mu_Q(z)$$

$$\geq \sum_{z \in R(Q) \cap R(A)} (\mu_A(z) - 1) + \sum_{z \in R(Q) \cap R(B)} (\mu_B(z) - 1) + \sum_{z \in R(Q) \cap R(C)} (\mu_A(z) - 1).$$

Or, d'après l'équivalence précédente : $\sum_{z \in R(Q) \cap R(A)} (\mu_A(z) - 1) = \sum_{z \in R(A)} (\mu_A(z) - 1),$ et de même pour B et C. Donc :

Det C. Done.

$$\deg(Q) \ge \sum_{z \in R(A)} (\mu_A(z) - 1) + \sum_{z \in R(B)} (\mu_B(z) - 1) + \sum_{z \in R(C)} (\mu_C(z) - 1).$$

(c) À nouveau d'après le théorème de d'Alembert-Gauss :

$$\sum_{z \in R(A)} (\mu_A(z) - 1) = \sum_{z \in R(A)} \mu_A(z) - \sum_{z \in R(A)} 1 = \deg(A) - r(A),$$

et de même pour B et C, d'où la formule voulue. On a donc, d'après 1.(b) :

$$S - 1 - \max(\deg(A), \deg(B), \deg(C)) \ge \deg(Q) \ge S - (r(A) + r(B) + r(C))$$

d'où, directement, l'inégalité de Mason-Stothers :

$$r(A) + r(B) + r(C) \ge 1 + \max\left(\deg(A), \deg(B), \deg(C)\right).$$

3. Supposons que A, B, C ne sont pas tous les trois constants. Comme $R(A^n) = R(A)$, et de même pour B et C, les polynômes A^n, B^n, C^n ne sont pas tous les trois constants et n'ont pas de racines communes; donc l'inégalité de Mason-Stothers s'applique à A^n, B^n et C^n , et s'écrit :

$$r(A) + r(B) + r(C) \ge 1 + n \max(\deg(A), \deg(B), \deg(C)).$$

Supposons par exemple que $\max(\deg(A), \deg(B), \deg(C)) = \deg(A)$, on a alors, en remarquant que $r(A) \leq \deg(A)$ d'après d'Alembert-Gauss :

$$n \deg(A) + 1 \le r(A) + r(B) + r(C) \le \deg(A) + \deg(B) + \deg(C) \le 3 \deg(A),$$

donc $1 \le (3-n)\deg(A) \le 0$, ce qui est absurde. Donc A, B, C sont constants.

On a ainsi démontré le théorème de Fermat polynomial, bien plus simple que son homologue sur les entiers!

L'inégalité de Mason-Stothers, démontrée par W. W. Stothers (1946-2009) en 1981 et redémontrée indépendamment par R. C. Mason (1958-?) en 1983, a son équivalent dans le monde des entiers, connu sous le nom de conjecture abc. La vérification de cette conjecture fournirait une démonstration du théorème de Fermat (entier) pour tout exposant $n \geq 6$, bien plus courte que la démonstration (1994) d'Andrew Wiles (1953-).

Une démonstration de la conjecture abc a été proposée par Shinichi Mochizuki (1969-) en 2012, et publiée en 2020. Elle ne fait pour l'instant pas consensus parmi les spécialistes.

Exercice 3.

- 1. (a) Comme f g est continue et ne s'annule pas, elle est de signe constant d'après le théorème des valeurs intermédiaires.
 - (b) La fonction |f g| est continue sur [0, 1] comme composée de fonctions continues, et positive puisque la fonction valeur absolue l'est. D'après le théorème de Weierstrass, |f g| admet donc un minimum $m \ge 0$ sur [0, 1]. Comme de plus f g ne s'annule pas, m > 0.
- 2. (a) Comme $g(x) \in [0,1]$, on a d'après la question précédente : $f(g(x)) g(g(x)) \ge m$. De même, comme $f(x) \in [0,1]$: $f(f(x)) g(f(x)) \ge m$. Donc, puisque f et g commutent : $f(f(x)) f(g(x)) \ge m$.
 - (b) D'après la question précédente : $f(f(x)) \ge m + f(g(x)) \ge m + m + g(g(x)) = 2m + g(g(x))$.
 - (c) L'inégalité voulue est vraie pour k=1 et k=2 d'après les questions précédentes. Soit $k \in \mathbb{N}^*$, supposons-la vraie au rang k. Alors, comme f et g commutent, et d'après la question 1.b. :

$$f^{k+1}(x) = f^k(f(x)) \ge km + g^k(f(x)) = km + f(g^k(x)) \ge km + m + g(g^k(x)),$$

donc l'inégalité est vraie au rang k+1. Par récurrence, elle est donc vraie pour tout $k \in \mathbb{N}^*$. Or : $\forall k \in \mathbb{N}^*$, $g^k(x) \in [0,1]$, donc $km+g^k(x) \geq km \underset{k \to +\infty}{\longrightarrow} +\infty$. Donc, d'après le théorème de divergence par minoration, $f^k(x) \underset{k \to +\infty}{\longrightarrow} +\infty$, ce qui est absurde puisque, $\forall k \in \mathbb{N}^*$, $f^k(x) \in [0,1]$. Donc x_0 existe.

Problème.

- I. 1. La fonction f est le quotient de \sin par $h: x \mapsto x$, qui sont usuellement de classe C^{∞} sur \mathbb{R}_{+}^{*} . Comme h ne s'annule pas sur \mathbb{R}_{+}^{*} , f est donc également de classe C^{∞} sur \mathbb{R}_{+}^{*} .
 - 2. On a : $\forall x \in \mathbb{R}_+^*$,

$$f'(x) = \frac{\sin'(x) \times x - \sin(x) \times 1}{x^2} = \frac{x \cos(x) - \sin(x)}{x^2},$$

puis

$$f''(x) = \frac{(\cos(x) - x\sin(x) - \cos(x)) \times x^2 - (x\cos(x) - \sin(x)) \times 2x}{(x^2)^2}$$
$$= \frac{-(x^2 - 2)\sin(x) - 2x\cos(x)}{x^3}.$$

- 3. On a usuellement : $\sin^{(n)} = \begin{cases} & \sin & \text{si} \quad n = 4k, \\ & \cos & \text{si} \quad n = 4k+1, \\ & -\sin & \text{si} \quad n = 4k+2, \\ & -\cos & \text{si} \quad n = 4k+3. \end{cases}$
- II. 1. Soit $x \in \mathbb{R}_+^*$.
 - Pour n = 0: $\frac{P_0(x)\sin^{(0)}(x) + Q_0(x)\sin^{(1)}(x)}{x^1} = \frac{P_0(x)\sin(x) + Q_0(x)\cos(x)}{x}$, donc $P_0 = 1$ et $Q_0 = 0$,
 - Pour n = 1: $\frac{P_1(x)\sin^{(1)}(x) + Q_1(x)\sin^{(2)}(x)}{x^2} = \frac{P_1(x)\cos(x) Q_1(x)\sin(x)}{x}$, donc $P_1 = X$ et $Q_1 = 1$,
 - Pour n=2: $\frac{P_2(x)\sin^{(2)}(x)+Q_2(x)\sin^{(3)}(x)}{x^3}=\frac{-P_2(x)\sin(x)-Q_2(x)\cos(x)}{x},$ donc $P_2=X^2-2$ et $Q_2=2X$.
 - 2. On a vu que P_n et Q_n existent pour n=0,1,2. Soit $n \in \mathbb{N}$, supposons que P_n et Q_n existent. Soit $x \in \mathbb{R}_+^*$, on a alors :

$$f^{(n)}(x) = \frac{P_n(x)\sin^{(n)}(x) + Q_n(x)\sin^{(n+1)}(x)}{x^{n+1}},$$

donc:

$$f^{(n+1)}(x) = \frac{\left(P'_n(x)\sin^{(n)}(x) + P_n(x)\sin^{(n+1)}(x) + Q'_n(x)\sin^{(n+1)}(x) + Q_n(x)\sin^{(n+2)}(x)\right)x^{n+1}}{\frac{x^{2n+2}}{-\frac{(xP_n(x)\sin^{(n)}(x) + Q'_n(x)\sin^{(n+1)}(x)) \times (n+1)x^n}{x^{2n+2}}}}$$

$$= \frac{(xP_n(x) + xQ'_n(x) - (n+1)Q_n(x))\sin^{(n+1)}(x) + (xQ_n(x) - xP'_n(x) + (n+1)P_n)\sin^{(n+2)}(x)}{x^{n+2}},$$

donc:

$$P_{n+1} = XP_n + XQ'_n - (n+1)Q_n$$
 (1) et $Q_{n+1} = XQ_n - XP'_n + (n+1)P_n$ (2)

conviennent. Donc P_{n+1} et Q_{n+1} existent. Par récurrence, P_n et Q_n existent donc pour tout $n \in \mathbb{N}$.

- 3. En utilisant les formules (1) et (2), on a :
 - $P_3 = XP_2 + XQ_2' 3Q_2 = (X^3 2X) + 2X 6X = X^3 6X$,
 - $Q_3 = XQ_2 XP_2' + 3P_2 = 2X^2 2X^2 + 3(X^2 2) = 3X^2 6$
- 4. On a vu que les polynômes P_n et Q_n sont à coefficients entiers pour tout $n \in [0, 3]$. Les formules de la question 2. montrent alors par récurrence directe que P_n et Q_n sont à coefficients entiers pour tout $n \in \mathbb{N}$.

De plus, pour tout $n \in [0,3]$, $\deg(P_n) = n$, $\deg(Q_n) = n-1$ (sauf pour Q_0), et les coefficients dominants de P_n et Q_n sont respectivement 1 et n.

Soit $n \in \mathbb{N}^*$, supposons ces assertions vraies au rang n. Alors :

- d'après (1), P_{n+1} a pour terme dominant $X \times X^n = X^{n+1}$, donc a pour degré n+1 et pour coefficient dominant 1,
- d'après (2), Q_{n+1} a pour terme dominant $(n+1) \times X^n$, donc a pour degré n et pour coefficient dominant n+1,

donc les assertions sont vraies au rang n+1. Par récurrence, elles sont donc vraies pour tout $n \in \mathbb{N}^*$.

III. 1. Notons à nouveau $h: x \mapsto x$. On a $\sin = hf$, avec h' = 1 et : $\forall k \ge 2, \ h^{(k)} = 0$. D'après la formule de Leibniz, on a donc, pour tout $n \in \mathbb{N}^*$:

$$\forall x \in \mathbb{R}_{+}^{*}, \sin^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} h^{(k)}(x) f^{(n-k)}(x)$$
$$= h(x) f^{(n)}(x) + nh'(x) f^{(n-1)}(x)$$
$$= x f^{(n)}(x) + n f^{(n-1)}(x),$$

ce qui s'écrit :

$$\forall x \in \mathbb{R}_{+}^{*}, \ x^{n} \sin^{(n)}(x) = P_{n}(x) \sin^{(n)}(x) + Q_{n}(x) \sin^{(n+1)}(x) + nP_{n-1}(x) \sin^{(n-1)}(x) + nQ_{n-1}(x) \sin^{(n)}(x) = (P_{n}(x) + nQ_{n-1}) \sin^{(n)}(x) + (Q_{n}(x) - nP_{n-1}(x)) \sin^{(n-1)}(x),$$

d'où par identification : $P_n + nQ_{n-1} = X^n$ et $Q_n - nP_{n-1} = 0$, c'est-à-dire, pour tout $n \in \mathbb{N}$:

$$P_{n+1} + (n+1)Q_n = X^{n+1}$$
 (3) et $Q_{n+1} = (n+1)P_n$ (4).

2. En utilisant les relations (2) et (4), on a : $(n+1)P_n = XQ_n - XP'_n + (n+1)P_n$, donc :

$$P_n' = Q_n \quad (5).$$

En utilisant les relations (1) et (3), on a : $X^{n+1} - (n+1)Q_n = XP_n + XQ'_n - (n+1)Q_n$, donc, d'après la relation (5) :

$$X^{n} = P_{n} + Q'_{n} = P_{n} + P''_{n} \quad (6).$$

3. On sait que P_n est de degré n. Notons $P_n = \sum_{k=0}^n p_k X^k$, on sait également que $p_n = 1$.

La relation (6) s'écrit alors :

$$\sum_{k=2}^{n} k(k-1)p_k X^{k-2} + \sum_{k=0}^{n} p_k X^k = X^n,$$

donc par identification : $p_n=1, p_{n-1}=0$ et : $\forall k \in [0, n-2], (k+2)(k+1)p_{k+2}+p_k=0$. Par conséquent :

$$p_{n-1} = p_{n-3} = \dots = p_{n-(2k-1)} = 0$$
 où $k = \lfloor \frac{n}{2} \rfloor$,

et : $p_{n-2} = -n(n-1)p_n = -n(n-1)$, $p_{n-4} = -(n-2)(n-3)p_{n-2} = n(n-1)(n-2)(n-3)$, et plus généralement :

$$\forall k \in \left[0, \left\lfloor \frac{n}{2} \right\rfloor\right], \ p_{n-2k} = (-1)^k \frac{n!}{(n-2k)!}.$$

Donc:

$$P_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{n!}{(n-2k)!} X^{n-2k}.$$

4. D'après la relation (6), la fonction polynomiale $x\mapsto P_n(x)$ est une solution particulière de l'équation considérée. De plus, l'équation homogène associée $y_h''+y_h=0$ a classiquement pour solutions les $y_h: x\mapsto \lambda\cos(x)+\mu\sin(x)$ où $\lambda,\mu\in\mathbb{R}$, donc :

$$S = \{ y : x \mapsto \lambda \cos(x) + \mu \sin(x) + P_n(x) \mid \lambda, \mu \in \mathbb{R} \}.$$