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Devoir surveillé n◦ 3
CORRIGÉ

Exercice 1.

1. (a) Le nombre f(x) est défini lorsque x ∈ D√
· = R+ et x ∈ Dln = R∗

+, donc Df = R+∩R∗
+ = R∗

+.
(b) La fonction f est, à une constante près, le produit des fonctions usuellement dérivables

√
· et ln,

donc f est dérivable sur son domaine de définition. On a : ∀x ∈ R∗
+, f

′(x) =
ln(x)

2
√
x
+

√
x

x
, donc :

f ′(x) > 0 ⇔ ln(x)

2
√
x
> −

√
x

x
⇔ ln(x) > −2 ⇔ x >

1

e2
.

La fonction f est donc strictement décroissante sur
]
0,

1

e2

]
et strictement croissante sur

[
1

e2
,+∞

[
.

De plus, par croissances comparées : lim
x→0

f(x) = ln(2), et lim
x→+∞

f(x) = +∞. D’où le tableau :

x 0+
1

e2
+∞

f ′(x) − 0 +
ln(2) +∞

f ↘ ↗
−2

e
+ ln(2)

(c) D’après l’étude ci-dessus, la fonction f atteint son minimum en
1

e2
, valant −2

e
+ln(2) ≃ −0, 05.

Comme la fonction f est continue sur R∗
+ et, d’une part strictement décroissante sur

]
0,

1

e2

]
avec

0 ∈ f

(]
0,

1

e2

])
; d’autre part strictement croissante sur

[
1

e2
,+∞

[
avec 0 ∈ f

([
1

e2
,+∞

[)
:

d’après le théorème de la bijection continue, f s’annule exactement une fois sur
]
0,

1

e2

]
, et une

fois sur
[
1

e2
,+∞

[
. Donc f s’annule deux fois sur R∗

+.

2. (a) On a
(

1

n2

) 1
n

=
1

2
, donc

1

n2
=

1

2n
, donc n2 = 2n.

(b) Comme n ≥ 1, 2n est divisible par 2. Donc, d’après a), n2 est divisible par 2. Donc 2 est un
facteur premier de n2, donc, comme n et n2 ont les mêmes facteurs premiers, 2 est un facteur
premier de n. Donc n est pair.
Posons alors n = 2k. On a : (2k)2 = 22k, donc 4k2 = 22k. Or k = 1 et k = 2 satisfont cette
équation.
Donc n = 2 et n = 4 sont deux valeurs possibles de n.

3. D’après 2., x =
1

4
et x =

1

16
sont solutions de (E).

De plus : (E) ⇔
√
x ln(x) = − ln(2) ⇔ f(x) = 0. Or, d’après 1., cette dernière équation a exacte-

ment deux solutions réelles.

Donc les solutions trouvées en 2. sont exactement les solutions de (E) : S =

{
1

4
,
1

16

}
.



Exercice 2.

1. Comme l’application g est injective, l’application h l’est également.
Comme l’ensemble d’arrivée de h est égal à son ensemble image, l’application h est surjective.
Donc l’application h est bijective.

2. Soit x ∈ X . Alors f(x) ∈ Y , donc φ(x) = g(f(x)) ∈ g(Y ). Donc φ est bien définie.
De plus, comme f et g sont injectives, l’application φ = g ◦ f est injective.

3. (a) Soit x ∈ E :

• Si x ∈ B, alors v(x) = u(x) ∈ A par définition de u.
• Si x /∈ B, alors x /∈ B0, donc x ∈ A. Donc v(x) ∈ A.

Dans tous les cas, v(x) ∈ A, donc l’application v est bien définie.

(b) On a : u(B) =
⋃
n∈N

u(Bn) =
⋃
n∈N

Bn+1 =
⋃
n∈N∗

Bn ⊂ B.

Soient x1, x2 ∈ E. Supposons que v(x1) = v(x2). On raisonne par disjonction de cas :

• Si x1 ∈ B et x2 ∈ B : alors u(x1) = u(x2), donc, comme u est injective, x1 = x2,
• Si x1 /∈ B et x2 /∈ B : alors x1 = x2,
• Si x1 ∈ B et x2 /∈ B : alors u(x1) = x2. Or u(B) ⊂ B, donc u(x1) ∈ B, donc x2 ∈ B, ce

qui est faux. Il est donc impossible que x1 ∈ B et x2 /∈ B.
• Si x1 /∈ B et x2 ∈ B, on arrive de même à une absurdité.

Donc, dans tous les cas possibles, x1 = x2. Donc l’application v est injective.
(c) Comme y ∈ B, il existe n ∈ N tel que y ∈ Bn.

De plus, comme y ∈ A, y /∈ B0. Donc n ≥ 1, et donc : y ∈ u(Bn−1).
Il existe donc x ∈ Bn−1 tel que y = u(x).
Donc y admet bien un antécédent par u dans E.

(d) D’après b), l’application v est injective.
Montrons que l’application v est surjective :
Soit y ∈ A, montrons que y admet un antécédent par v dans E.

• Si y ∈ B, alors, d’après c), il existe x ∈ E tel que y = u(x). Donc, par définition de v,
y = v(x).

• Si y /∈ B, alors, par définition de v : y = v(y).

L’application v est donc bien surjective.
L’application v est donc bijective.

4. D’après le résultat de la question 3., appliqué à E = X , A = g(Y ) ⊂ E, et u = φ injective :

il existe une application ψ : X → g(Y ) bijective.

Comme, d’après 1., l’application h : Y → g(Y ) est également bijective :

l’application h−1 ◦ ψ est donc une bijection de X dans Y .

Le théorème de Cantor-Bernstein est ainsi démontré.



Exercice 3.

1. On a F0 = 3, F1 = 5, F2 = 17 et F3 = 257.
F0, F1 et F2 sont usuellement premiers, et

√
F3 ≃ 16, 03, donc on vérifie à la main que F3 n’est pas

divisible par 2, 3, 5, 7, 11 ou 13.
Pour F4, on applique l’algorithme suivant :
from math import sqrt
def estpremier(n):

for k in range(2,int(sqrt(n))+1):
if n%k==0:
return False

return True
print(estpremier(2**(2**4)+1))

2. On a (54 + 24)228 −
(
(27 × 5)4 − 1

)
= 54 × 228 + 232 − 228 × 54 − 1 = 232 − 1 = F5.

3. D’après la formule du binôme de Newton :

(a− 1)m =
m∑
k=0

(
m

k

)
ak(−1)m−k.

Le premier terme de cette somme est (−1)m = 1 (puisque m est pair), donc :

(a− 1)m − 1 =
m∑
k=1

(
m

k

)
ak(−1)m−k.

Comme chaque terme de cette somme est un multiple de a, (a− 1)m − 1 est bien divisible par a.
4. On a 54 + 24 = 625 + 16 = 641 et 27 × 5 = 26 × 10 = 640.

Posons a = 641, alors d’après la question 2 :

F5 = a× 228 −
(
(a− 1)4 − 1

)
.

Or d’après la question 3, (a− 1)4 − 1 est divisible par a.
Comme a× 228 est également divisible par a, F5 l’est donc aussi.
Donc 641 divise F5, donc F5 n’est pas premier.



Problème.

I. 1. Comme les fonctions ch, sh et arctan sont définies sur R et que : ∀x ∈ R, 1 + ch(x) ̸= 0, les
fonctions f et g sont définies sur R.

2. Les fonctions ch, sh et arctan sont usuellement dérivables sur R, donc f et g sont dérivables sur
R.
On a :

f ′ =
1

2

sh′

1 + sh2 =
1

2

ch

ch2 =
1

2ch
,

et g′ =

(
sh

1+ch

)′
1 +

(
sh

1+ch

)2 =

ch(1+ch)−sh2

(1+ch)2

1 + sh2

(1+ch)2

=
ch(1 + ch)− sh2

(1 + ch)2 + sh2 =
1 + ch

2ch + 2ch2 =
1

2ch
,

donc f ′ = g′.
3. D’après la question précédente, il existe donc c ∈ R tel que f = g + c.

Or f(0) =
1

2
arctan(0) = g(0), donc c = 0. Donc f = g.

II. 1. Cours : E = R \
(π
2
+ πZ

)
.

2. Soit x ∈ R. Alors 2f(x) = arctan(sh(x)).
Or : ∀y ∈ R, arctan(y) ∈

]
−π
2
,
π

2

[
⊂ E, donc 2f(x) ∈ E.

On a :
∀x ∈ R, tan(2f(x)) = tan (arctan(sh(x))) = sh(x).

3. La fonction h est dérivable sur R et : ∀x ∈ R, h′(x) =
1

1 + ch(x)
> 0, donc h est strictement

croissante sur R. De plus, h est impaire et h(x) −→
x→+∞

1, donc h est à valeurs dans ]− 1, 1[.

4. Comme h est à valeurs dans ]−1, 1[ , g = arctan ◦h est à valeurs dans ] arctan(−1), arctan(1)[ =]
−π
4
,
π

4

[
. Donc : ∀x ∈ R, 2g(x) ∈

]
−π
2
,
π

2

[
.

On a :

∀x ∈ R, tan(2g(x)) =
2 tan(g(x))

1− tan2(g(x))
=

2 sh
1+ch

1− sh2

(1+ch)2

(x) =
2sh(1 + ch)

(1 + ch)2 − sh2 (x) = sh(x).

5. Soit x ∈ R. Comme tan(2f(x)) = tan(2g(x)) et que (2f(x), 2g(x)) ∈
]
−π
2
,
π

2

[2
, on a

2f(x) = 2g(x), donc f(x) = g(x). Donc f = g.
III. Application :

1. On a ch

(
1

2
ln(3)

)
=

√
3 + 1√

3

2
=

2√
3

et sh
(
1

2
ln(3)

)
=

√
3− 1√

3

2
=

1√
3

.

2. On a f
(
1

2
ln(3)

)
=

1

2
arctan

(
1√
3

)
=

1

2

π

6
=

π

12
,

et g
(
1

2
ln(3)

)
= arctan

(
1√
3

1 + 2√
3

)
= arctan

(
1

2 +
√
3

)
= arctan

(
2−

√
3
)

,

donc tan
( π
12

)
= 2−

√
3.


