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Chapitre 1

Généralités

1.1 Introduction
Les séries entiéres sont des séries de fonctions particulières, leurs sommes partielles sont des fonctions po-
lynômes (cela reste imprécis, voir plus bas pour une définition). Par exemple, puisque pour tout complexe

z : exp(z) =
∞∑

n=0

zn

n! , l’exponentielle complexe ou réelle est somme d’une telle série de fonctions. Ce n’est

pas, bien sûr, un phénomène isolé car la plupart des fonctions élémentaires très régulières bénéficie d’un
traitement analogue ; historiquement pour Newton et Euler il s’agissait de la bonne façon de « voir » les
fonctions (elle se prête naturellement aux approximations dont ces démiurges calculateurs raffolaient).
On désigne par S le C espace vectoriel des suites à termes complexes ; on notera a( resp. b etc...) l’élément
(an)( resp. (bn)) de S
Pour r > 0, D(0, r) = {z ∈ C, |z| < r}, il s’agit du disque ouvert, centré à l’origine et de rayon r ; sa frontière
se notera Cr.
Toutes les fonctions considérées sont à valeurs dans C.

1.2 Définitions. Premiers exemples
Nous conviendrons de noter x ( resp. z) une variable réelle (resp. complexe).

Définition 1 Une série entière de variable réelle (resp. complexe) est une série de fonctions
∑
n≥0

un telle

que : ∃a = (an) ∈ S,∀n ∈ N,∀x ∈ R(resp.C), un(x) = anxn(resp.un(z) = anzn).
Avec un abus de notation circonscrit à ce type de séries de fonctions, on la notera

∑
n≥0

anxn(resp.
∑
n≥0

anzn).

La suite a ( unique, bien sûr) est la suite des coefficients de la série entière précédente et, plus précisément,
n ∈ N, an en est le coefficient d’ordre n (a0 est appelé terme constant).
Sa désigne la somme de cette série entière.

Notons d’emblée une évidence :

Remarque 1 Pour toute série entière
∑
n≥0

anxn(resp.
∑
n≥0

anzn), Sa est au moins définie en 0 et

Sa(0) = a0 .
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Exemple 1 i)
∑
n≥0

zn est une série entière dont la somme est uniquement définie sur D(0, 1) par

S : z → 1
1− z

.

ii)
∑
n≥0

n!zn est une série entière dont la somme n’est définie qu’en 0.

iii) Les fonctions polynômes de variable réelle ou complexe sont sommes de séries entières partout conver-
gentes.
iiii) La série entière

∑
n≥0

16nx4n est une série entière dite lacunaire, car ses coefficients sont nuls pour une

infinité d’indices. Sa somme n’est définie que sur l’intervalle ouvert ]− 1
2 ,

1
2[.

1.3 Rayon de convergence
Dans tout ce paragraphe,

∑
n≥0

anzn,
∑
n≥0

bnzn désignent des séries entières à variable complexe donc, comme

cas particulier z ← x, à variable réelle.
Le but de cette section est de préciser ou délimiter les ensembles sur lesquels une série entière converge
simplement (on le rappelle, c’est une série de fonctions d’un type particulier).

1.3.1 Le lemme d’Abel

C’est à comprendre et à savoir démontrer : tout en découle.

Proposition 1 Soit z0 ∈ C∗ tel que la suite (anzn
0 )n soit bornée, alors, pour tout r < |z0|, et pour tout

z ∈ D(0, r) la série
∑
n≥0

anzn est absolument convergente.

1.3.2 Définition du rayon de convergence

Désignons par X l’ensemble {r ≥ 0, (anrn)nsoit une suite bornée} ; il s’agit d’une partie non vide (0 y ap-
partient) de R. Dès lors :

Définition 2 Le rayon de convergence de la série entière
∑
n≥0

anzn est :
{

sup(X) si X est majoré
+∞ sinon

Dans tous les cas de figure, il sera noté ρ(
∑
n≥0

anzn) ( resp. ρ(
∑
n≥0

anxn)).

Il s’agit donc d’un élément de R+ ∪ {+∞} .

Proposition 2 (Caractérisation du rayon de convergence dans les cas extrêmes)
i) ρ(

∑
n≥0

anzn) = +∞ ⇔ la suite (anzn) est bornée pour tout z ∈ K ⇔ la série
∑
n≥0

anzn (A)CV pour tout

z ∈ C.
(La somme d’une telle série entière est définie pour toute valeur de la variable qu’elle soit réelle ou
complexe)
ii) ρ(

∑
anzn) = 0⇔ la suite (anzn) n’est pas bornée pour tout z ∈ K∗.

Proposition 3 Régionnement du plan complexe et de la droite réelle
On pose R = ρ(

∑
anzn) < +∞.

i) La série
∑

anzn converge absolument si |z| < R.
ii) La série diverge grossièrement si |z| > R.



1.3.3 Intervalle ouvert, disque ouvert de convergence d’une série entière

On convient que, pour R = +∞, D(0, R) = C.

Définition 3 Soit Soit
∑
n≥0

anzn (resp.
∑
n≥0

anxn )une série entière de rayon de convergence R ∈ R∗
+∪{+∞}.

D(0, R) est le disque ouvert de convergence de la série entière
∑
n≥0

anzn et CR en est le cercle d’incertitude

si R < +∞.
]−R, R[ est l’intervalle ouvert de convergence de la série entière

∑
n≥0

anxn et, dans le cas R fini, les points

±R en sont les points d’incertitude.
Le comportement d’une série entière est, quelle qu’elle soit, parfaitement déterminé dans le disque (ou
intervalle) ouvert de convergence et aussi dans l’ouvert C \D(0, R) ( ou R \ [−R, R]).

Remarque 2 On ne peut rien dire a priori dans la zone d’incertitude. Tout ou presque y est possible. Voilà
quelques exemples pour lesquels R = 1 :
i)
∑
n≥0

zn diverge en tout point C1.

ii)
∑
n≥1

zn

n2 converge tout point C1.

iii)
∑
n≥1

xn

n
converge en −1 et diverge en 1.



Chapitre 2

Propriétés du rayon de convergence

Elles sont données pour le cas de la variable complexe (qui contient le cas réel).
On se donne

∑
n≥0

anzn,
∑
n≥0

bnzn deux séries entières de rayon de convergence respectif Ra et Rb.

2.1 Encadrement du rayon de convergence
En revenant à la définition du rayon de convergence, on dispose de cette propriété très utile pour estimer le
rayon de convergence d’une série entière.

Proposition 4 Soient (z0, z1) ∈ C2.
i) Si la suite (anzn

0 ) est bornée alors Ra ≥ |z0|.
ii) Si la série

∑
n≥0

anzn
1 diverge alors Ra ≤ |z1|.

♡♡ L’idéal étant de pouvoir combiner i) et ii) avec |z0| = |z1|.

Exemple 2 Soit, pour n ≥ 1, an = la n-ième décimale de π ; nous voulons déterminer Ra.
La suite (an1n = an) est bornée puisque une décimale est comprise entre 0 et 9.
La série

∑
n≥0

an1n diverge grossièrement puisque dans le cas contraire la suite d’entiers (an) devrait converger

vers 0 c.a.d stationner sur 0 ce qui impliquerait que π soit un rationnel. Donc Ra = 1 .

2.2 Influence des coefficients sur le rayon de convergence

Proposition 5 i) Si λ ∈ C∗, ρ
(∑

λanzn
)

= ρ
(∑

anzn
)

.

ii) Si an = O(bn) alors ρ
(∑

anzn
)
≤ ρ

(∑
bnzn

)
.

(Cas particulier an = o(bn) et |an| ≤ |bn| à partir d’un certain rang).
ii) Si |an| ∼ |bn| alors ρ

(∑
anzn

)
= ρ

(∑
bnzn

)
( Résulte de ii))

iii) ρ
(∑

npanzn
)

= ρ
(∑

anzn
)
, ce pour tout p ∈ R.

Corollaire 1 ∀α ∈ R, ρ(
∑
n≥1

nαzn) = 1

2.3 Règle de d’Alembert pour les séries entières
♠♠♠La règle suivante a pour elle d’être du type formule mécanique mais ne peut pas toujours s’appliquer
ou n’est pas toujours pertinente (attention aux séries entières lacunaires).
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Proposition 6 On suppose :
i) qu’à partir d’un certain rang an ̸= 0,
ii) il existe L ∈ R+ ∪ {+∞} tel que

∣∣∣∣an+1
an

∣∣∣∣ →n→+∞
L.

ALORS : Ra = 1
L

avec les conventions 1
0 = +∞,

1
+∞ = 0.

Exemple 3 Soit à déterminer le rayon de convergence de la série entière
∑
n≥0

(n!)2xn

(2n + 1)! .

En posant, pour tout entier naturel n, an = (n!)2

(2n + 1)! , il vient |an+1
an
| = (n + 1)2

(2n + 3)(2n + 2) →
1
4 donc, par la

règle de d’Alembert Ra = 4.

Exemple 4 Examinons néanmoins une situation où cette règle est inopérante. Notons, pour n ≥ 1, pn le
n-ième nombre premier et considérons la série entière (fortement lacunaire)

∑
n≥1

pnxpn.

Notons cette série entière de façon plus conventionnelle
∑
n≥0

anxn, en posant an =
{

n si n est premier
0sinon .

Comme an ≤ n pour tout n, Ra ≥ 1. Mais la suite (pn) n’étant pas bornée, Ra ≤ 1. Finalement Ra = 1

2.4 Effet des opérations algébriques sur les rayons de convergence et
les sommes de séries entières

2.4.1 Somme et Linéarité

Proposition 7 i) ρ(
∑
n≥0

(an + bn)zn) ≥ min(Ra, Rb) avec égalité si Ra ̸= Rb.

ii) De plus ,pour λ ∈ C et |z| < min(Ra, Rb) :
∞∑

n=0
(an + λbn)zn =

∞∑
n=0

anzn + λ
∞∑

n=0
bnzn

2.4.2 Produit de Cauchy ⋆

Définition 4 On appelle produit de Cauchy des séries entières
∑
n≥0

anzn et
∑
n≥0

bnznla série entière
∑
n≥0

cnzn,

où pour tout entier n : cn =
∑

(p,q)∈N2,p+q=n

apbq =
n∑

p=0
apbn−p.

Remarque 3 On observera, en fixant z, qu’il ne s’agit rien d’autre que du produit de Cauchy des deux
séries

∑
n≥0

anzn et
∑
n≥0

bnzn comme il a été défini dans le chapitre consacré aux séries. Le résultat suivant

n’est donc pas surprenant.

En gardant les notations de la définition précédente :

Proposition 8 i) ρ(
∑
n≥0

cnzn) ≥ min(Ra, Rb).

ii) ∀z, |z| < min(Ra, Rb),
∞∑

n=0
cnzn = (

∞∑
n=0

anzn)(
∞∑

n=0
bnzn).



Chapitre 3

Propriétés de la somme d’une série
entière

On se donne une série entière de variable réelle
∑
n≥0

anxn de rayon R > 0. On note S sa somme et I

son intervalle ouvert de convergence.

3.1 Le principe fondamental
Toute ce chapitre repose sur ce résultat.

Théorème 1 La série entière
∑
n≥0

anxn converge normalement sur tout segment de I, son intervalle

ouvert de convergence

Remarque 4 " On ne simplifiera pas ce théorème en confondant la CVN sur tout segment de I et la
CVN sur I, faute cardinale stigmatisée par tous les rapports de jury.
En effet la série entière

∑
n≥0

xn, de rayon de convergence 1, ne converge pas normalement sur ] − 1, 1[= I

puisque sup(|xn|)
x∈I

= 1.

3.2 Continuité de la somme d’une série entière sur son intervalle ouvert
de convergence

Grâce au théorème C0 pour les séries de fonctions et la section précédente, il vient sans peine.

Proposition 9 S est continue sur I.

Toujours par le théorème C0 pour les séries de fonctions, on dispose du raffinement suivant :

Proposition 10 R < +∞.
Si la série

∑
n≥0

anRn converge absolument alors S est continue sur [−R, R] ; en effet il y a cette fois CVN de

la série entière sur [−R, R].

(Par exemple x→
∞∑

n=1

xn

n2 est continue sur [−1, 1])

Conformément au programme et ce sera la seule intrusion de la variable complexe dans ce chapitre, nous
admettons que :

Proposition 11 Soit
∑
n≥0

anzn une série entière de variable complexe, de rayon de convergence R > 0 et

de somme Sa.
Sa est continue sur le disque ouvert D(0, R).
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3.3 Intégration ou primitivation terme à terme
Grâce au théorème d’intégration terme à terme sur un segment pour une série de fonctions, nous avons :

Proposition 12 Pour tout x ∈ I :∫ x

0
(

∞∑
n=0

antndt) =
∞∑

n=0
an

xn+1

n + 1 .

(Ce qui sous-entend que la série
∑
n≥0

an
xn+1

n + 1 converge)

Exemple 5 Cette proposition est une machine à formule (♡).

De la relation 1
1− x

=
∞∑

n=0
xn valable pour x ∈]− 1, 1[, on déduit par intégration sur le segment [0,

1
2] :

ln(2) =
∞∑

n=1

1
n2n

.

Remarque 5 ♡ Pour utiliser ce résultat, il vous suffira de préciser que vous intégrer terme à terme la
somme d’une série entière sur un segment inclus dans son intervalle ouvert de convergence.

3.4 Dérivation terme à terme
Le théorème de dérivation successive pour les séries de fonctions (voir plus loin pour les détails) permet
d’énoncer :

Théorème 2 i) Pour tout p ∈ N∗, ρ(
∑
n≥p

n!
(n− p)!anxn−p) = R.

ii) S est C∞ sur ]−R, R[ et ∀p ∈ N∗, ∀x ∈]−R, R[ :

S(p)(x) = (
∞∑

n=0
anxn)(p) =

∞∑
n=0

(anxn)(p) soit

S(p)(x) =
∞∑

n=p

n!
(n− p)!anxn−p =

∞∑
n=0

(n + p)!
n! an+pxn ou S(p)(x) = p!

∞∑
n=0

(
n + p

p

)
an+pxn.

iii) En particulier ∀p ≥ 0, ap = S(p)(0)
n! .

Preuve 1 i) Par la proposition 5 i), ii) et iii), on déduit succesivement que, en posant
R′ = ρ(

∑
n≥p

n!
(n− p)!anxn−p), que R′ = ρ(

∑
n≥0

n(n− 1)...(n− p + 1)anxn) = ρ(
∑
n≥0

npanxn) = R.

iii)Nous prouvons que nous pouvons dériver terme à terme sur I =]−R, R[ à l’ordre p.
Pour tout entier n, un : x ∈ I → anxn est de classe Cp sur I.
La série de fonctions

∑
n≥0

un CVS sur I.

Grâce à i) la série de fonctions
∑
n≥0

u(q)
n CVN sur tout segment de I, ce pour tout entier q ≤ p.

Par le théorème de dérivation successive pour les séries de fonctions, appliqué à
∑
n≥0

un, on peut donc

affirmer que la somme de cette série de fonctions (à savoir S) est de classe Cp sur I et que ses dérivées
s’obtiennent par dérivation terme à terme.
iii) Simple évaluation en 0 dans la formule précédente.■

Remarque 6 ♡ Pour utiliser ce résultat, il vous suffira de préciser que vous dériver terme à terme la
somme d’une série entière sur son intervalle ouvert de convergence.
On retiendra en outre que le rayon de convergence d’une série entière est invariant par dérivation (et
primitivation) terme à terme.



Exemple 6 Le rayon de convergence de la série entière
∑
n≥0

xn étant égal à 1, en dérivant terme à terme

la somme de cette série entière sur l’intervalle ouvert ]− 1, 1[, il vient :

∀p ∈ N,∀x ∈] − 1, 1[, 1
(1− x)p+1 =

∞∑
n=0

(
n + p

p

)
xn (formule utile en probabilité qui, soit vous est donnée,

soit vous est proposée en tant que question.)

Une conséquence fondamentale du théorème précédent est une généralisation d’un fait bien connu concernant
les polynômes (principe des identités algébriques) ; on convient d’appeler voisinage de 0 tout intervalle
ouvert contenant 0.

Théorème 3 Soient deux séries séries entières
∑
n≥0

anxn,
∑
n≥0

bnxn dont les sommes coincident au voisinage

de 0.
Alors ∀n ≥ 0, an = bn .



Chapitre 4

Fonctions développables en série entière

4.1 Généralités
Définition 5 Soit f définie au voisinage de 0.
f est dite développable en série entière (DSE) s’il existe une série entière de rayon de convergence
strictement positif dont la somme coincide avec f au voisinage de 0.
Par le théorème précédent cette série entière est alors unique et l’égalité entre f et la somme de cette unique
série entière (sur un intervalle ]− r, r[, r > 0) est le développement en série entière (DSE) de f sur ]− r, r[.

Exemple 7 f : x → 1
1− x

est DSE sur ] − 1, 1[ puisque f(x) =
∞∑

n=0
xn sur cet intervalle (et uniquement

sur celui-ci).

4.2 Propriétés des fonctions développables en série entière
On étudie maintenant le comportement de la notion de fonctions DSE vis à vis de certaines opérations
algébriques.

Proposition 13 Soient f, g DSE sur le même intervalle I de DSE sur I :
f(x) =

∞∑
n=0

anxn

g(x) =
∞∑

n=0
bnxn

i) Alors pour tout λ ∈ C, f + λg est DSE sur I et :

∀x ∈ I, (f + λg)(x) =
∞∑

n=0
(an + λbn)xn.

ii) fg est DSE sur I et :

∀x ∈ I, fg(x) =
∞∑

n=0
cnxn, où cn =

n∑
k=0

akbnk
, ce pour tout n (produit de Cauchy).

Remarque 7 " Rien sur le quotient ou la composée de fonctions DSE.

En revanche et en vertu du chapitre précédent :

Proposition 14 Soit f DSE sur l’intervalle I de DSE sur I : f(x) =
∞∑

n=0
anxn.

i) Si F est une primitive sur I de f , F est DSE sur I et ∀x ∈ I : F (x)− F (0) =
∞∑

n=0

an

n + 1xn+1.

ii) f ′ est DSE sur I, son DSE s’obtenant par dérivation terme à terme à partir de celui de f .
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4.3 Développements en série entière des fonctions usuelles

Proposition 15 i) Pour α ∈ C, exp(αx) =
∞∑

n=0

αn

n! xn (x ∈ R).

ii) chx =
∞∑

n=0

x2n

(2n)! (x ∈ R).iii) shx =
∞∑

n=0

x2n+1

(2n + 1)! (x ∈ R).

iv) cos x =
∞∑

n=0
(−1)n x2n

(2n)! et sin x =
∞∑

n=0
(−1)n x2n+1

(2n + 1)! (x ∈ R).

v) 1
1− x) =

∑
n = 0

∞
xn et 1

1 + x) =
∑

n = 0
∞

(−1)nxn ( x ∈]− 1, 1[).

Puis par intégration terme à terme :

vi) ln(1 + x) =
∞∑

n=1
(−1)n−1 xn

n
et ln(1− x) = −

∞∑
n=1

xn

n
(x ∈]− 1, 1[).

vii) arctan x =
∞∑

n=0
(−1)n x2n+1

2n + 1 (x ∈]− 1, 1[).

Enfin :

viii) ∀α ∈ R, (1 + x)α =
∞∑

n=0

(
α

n

)
xn (x ∈]− 1, 1[), où on a posé

(
α

n

)
=
∏n−1

k=0(α− k)
k! donc en particulier(

α

0

)
= 1 et

(
α

1

)
= α.

On pourra aussi retenir que pour a ∈ C∗ :

ix) 1
a− x

= 1/a

1− x/a
=

∞∑
n=0

xn

an+1 (|x| < |a|).

4.4 Formule de Taylor avec reste intégral. Application aux DSE

4.4.1 Formule de Taylor avec reste intégral ⋆

On prouve par récuurence et par intégrations par parties.

Théorème 4 Soient n ∈ N et f de classe Cn+1 sur [a, b].

f(b) =
n∑

k=0

f (k)(a)
k! (b− a)k +

∫ b

a

(b− x)n

n! f (n+1)(x)dx.

( Formule de Taylor avec reste intégral, à l’ordre n aux points {a, b}).

4.4.2 Série de Taylor d’une fonction de classe C∞ au voisinage de 0

Il découle de la définition précédente et de la fin du chapitre 3 que :

Proposition 16 Soit f DSE sur l’intervalle ]− r, r[, r > 0.
i) f est de classe C∞ sur ]− r, r[.

ii) Le DSE de f sur ]− r, r[ est : f(x) =
∞∑

n=0

f (n)(0)
n! xn .

Remarque 8 On pourra observer qu’une fonction f DSE est paire (on effectuera la traduction pour les
fonctions impaires) si et seulement si , au voisinage de 0, il existe une suite (an) de S telle que (au voisinage

de 0) : f(x) =
∞∑

n=0
anx2n.

On verra en exercice qu’il existe des fonctions C∞ qui ne sont pas DSE.



Définition 6 Pour f de classe C∞ au voisinage de 0, on nomme série de Taylor de f , la série entière∑
n≥0

f (n)(0)
n! xn.

Voici le seul critère théorique dont nous disposions pour montrer qu’une fonction de classe C∞ au voisinage
de 0 est développable en série entière. Il s’appuie sur la formule de Taylor avec reste intégral vue plus haut.

Proposition 17 Soit f de classe C∞ au voisinage de 0.
Les assertions suivantes sont équivalentes : i) f est DSE en 0
ii) La série de Taylor de f converge au voisinage de 0 et sa somme est f .
iii) ∃r > 0, ∀x ∈]− r, r[, 1

n!

∫ x

0
(x− t)nf (n+1)(t)dt →

n→+∞
0.



Chapitre 5

Applications des séries entières

A prendre comme des exercices classiques et sur le type desquels on attendra de vous une certaine réactivité.

5.1 Calcul de sommes de séries
Les développements en série entière usuels permettent, par simple évaluation, le calcul de certaines sommes
de séries.
Traitons un exemple relativement éclairant.

Exemple 8 Déterminer S =
∞∑

n=0
n22−n.

On considère pour cela la série entière
∑
n≥0

n2xn dont le rayon de convergence (Corollaire 1) vaut 1. Cette

série entière converge pour x = 1/2 puisque 1/2 ∈] − 1, 1[= I ; on justifie ainsi l’existence de S et en

remarquant que n2 = n(n − 1) + n, ce pour tout entier naturel n et en posant, pour x ∈ I, T (x) =
∞∑

n=0
xn,

il vient, par dérivation terme à terme sur l’intervalle de convergence de
∑
n≥0

xn, T ′′(x) + T ′(x) =
∞∑

n=0
n2xn,

pour tout x ∈ I.
Pour ces mêmes x (DSE usuel) : T (x) = 1

1− x
d’où T ′′(x)+T ′(x) = 2

(1− x)3 + 1
(1− x)2 et, en spécialisant :

S = 20 ■

Dans la même veine :

Exemple 9 Prouver que
∞∑

n=0

n3 + 1
n! = 6e

5.2 Prouver qu’une fonction de la variable réelle est très régulière au
voisinage de 0

Là encore regardons sur un exemple ce que les séries entières apportent à ce type de problématique.

Exemple 10 On note f la fonction défine sur R∗
+ par f(x) = x

ex − 1 .
Vérifier, que convenablement prolongée en 0, cette fonction est de classe C∞ sur R.
Les équivalents usuels imposent de choisir f(0) = 1.
La fonction f , ainsi prolongée, ne s’annule pas sur R et nous posons g = 1

f
.

Grâce au DSE de l’exponentielle, on a g(x) =
∞∑

n=1

xn−1

n! =
∞∑

n=0

xn

(n + 1)! , ce pour tout x ̸= 0. Mais on observe

(g(0) = 1) que cette égalité reste vraie pour x = 0. Ainsi nous avons prouvé que la fonction g était DSE
sur R donc que g était de classe C∞ sur R. Son inverse qui est parfaitement défini sur R l’est donc aussi
(par propriété élémentaire de telles fonctions). Bilan f est de classe C∞ sur R■ On remarquera que l’on a
habilement contourné le fait que l’on ne sache rien de l’inverse d’une fonction DSE.
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5.3 Série génératrice associée à une suite
C’est un contexte très riche dont Centrale a abusé ces dernières années. Grosso modo il s’agit, une suite
(an) (d’entiers en général et reliée à un problème (bien souvent combinatoire) digne d’intérêt) étant donnée,
de lui associer une série entière dont la connaissance apportera des informations sur (an). Les énoncés vous
préciseront cette série entière et vous serez amenés à travailler sur celle-ci. Ce qui suit essaie d’illustrer cette
démarche.

Exemple 11 Pour tout entier naturel n, on désigne par cn le nombre de couples (p, q) ∈ N2 tels que
p + 2q = n(c’est, par exemple, le nombre de manières de payer n euros avec seulement des pièces de un et
deux euros si n ≥ 1).

On considère la série entière
∞∑

n=0
cnxn de rayon de convergence 1 puisque 1 ≤ cn ≤ (n + 1)2.

Soient alors les deux séries entières de variable réelle (de même rayon de convergence que la précédente)
∑
n≥0

xn

et
∑
n≥0

x2n.

Nous désirons en déterminer leur produit de Cauchy. Pour cela on note an (resp. bn) leur coefficient d’ordre

n. Soient n entier naturel et : dn =
n∑

p=0
an−pbp. Mais an−pbp =

{
1 si p est pair
0 sinon

Il en ressort que dn =
∑

(p,q)∈N2|p+2q=n

1 = cn.

Par conséquent la proposition 8 permet d’écrire que ∀x ∈ I, Sc(x) = Sa(x)Sb(x) = 1
(1− x)(1− x2) , ce

grâce aux DSE usuels.
Par ailleurs (décomposition en éléments simples) et pour les mêmes x :

1
(1− x)(1− x2) = 1

4( 1
1− x

+ 1
1 + x

+ 2
(1− x)2 ) ou encore, avec les DSE usuels à nouveau,

1
(1− x)(1− x2) =

∞∑
n=0

(1 + (−1)n

4 + n + 1
2 )xn. On en déduit (par unicité des coefficients d’une série entière)

que cn = 1 + (−1)n

4 + n + 1
2 , ce pour tout entier n.

5.4 Séries entières et Equations différentielles linéaires à coefficients po-
lynomiaux

On peut voir les relations entre ces deux notions d’au moins deux manières.
Les équations différentielles permettent d’obtenir des DSE moyennant le principe de Cauchy (cf théorème
de Newton sur les DSE usuels).
Certaines équations différentielles, souvent liées à la physique, possèdent des solutions DSE et cela peut
suffire le cas échéant.

Exemple 12 (Retour sur l’exponentielle complexe)

Fixons z ∈ C et considérons le problème de Cauchy :
{

y′ − zy = 0
y(0) = 1

On a directement que f : t→ ezt est solution de ce problème. Par ailleurs on montre par simple dérivation

terme à terme que la fonction g : t →
∞∑

n=0

(zt)n

n! l’est aussi donc, par unicité, du problème de Cauchy

précédent f = g.

En spécialisant en t = 1, on retrouve ez =
∞∑

n=0

zn

n! .

Même point de vue mais plus élaboré :



Exemple 13 Déterminer le DSE de f = (arcsin)2.
Comme la fonction arcsin est DSE sur I =]−1, 1[, f l’est aussi et, puisque l’on a déterminé dans la douleur
le DSE de la fonction arcsin on pourrait s’en tirer avec un produit de Cauchy. Mais nous n’aurions les
coefficients de notre DSE que sous la forme d’une somme qu’il semble pénible de simplifier.
Une autre idée consiste à dériver f une première fois sur I donc de voir que 2 arcsin(x) =

√
1− x2f ′(x)

pour x ∈ I puis en redérivant d’établir que f est solution de (E) : (1− x2)y′′ − xy′ = 2.
Nous allons chercher les solutions DSE de (E) sur I qui sont paires (f bénificiant de cette double qualité).
Pour cela on détermine les solutions DSE impaires de (E’) sur I : (1 − x2)y′ − xy = 2 sous la forme

y : x→
∞∑

n=0
anx2n+1.

Par dérivation terme à terme sur I on a, pour tout x ∈ I :

−
∞∑

n=0
(2n+2)anx2n+2 +

∞∑
n=0

(2n+1)anx2n = 2. Soit aussi après changement d’indice dans la première somme

et regroupement
∞∑

n=1
(−(2n)an−1 + (2n + 1))anx2n + a0 = 2 donc par unicité des coefficients d’une série entière il vient :

a0 = 2 et ∀n ≥ 1, an = 2n

2n + 1an−1. Ces relations donnent, simple récurrence an = 2 (2nn!)2

(2n + 1)! . Puis, par

simple primitivation (f(0) = 0), f(x) = 2
∞∑

n=0

(2nn!)2

(2n + 2)!x
2n+2 ■

A titre d’exercice le second point de vue :

Exemple 14 Chercher les solutions DSE de (E) : xy′′ + y′ + xy = 0 (Equation de Bessel)

On devrait trouver x→ a0

∞∑
n=0

(−1)nx2n

22n(n!)2 , où a0 ∈ R. On remarquera que ces solutions le sont sur R.


