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Chapitre 1
Généralités

1.1 Introduction

Les séries entiéres sont des séries de fonctions particuliéres, leurs sommes partielles sont des fonctions po-

lynémes (cela reste imprécis, voir plus bas pour une définition). Par exemple, puisque pour tout complexe
oo n

z . , - .
z :exp(z) = E - I’exponentielle complexe ou réelle est somme d’une telle série de fonctions. Ce n’est
= nl
pas, bien sir, un phénomene isolé car la plupart des fonctions élémentaires tres régulieres bénéficie d’un

traitement analogue; historiquement pour Newton et Euler il s’agissait de la bonne fagon de « voir » les
fonctions (elle se préte naturellement aux approximations dont ces démiurges calculateurs raffolaient).

On désigne par S le C espace vectoriel des suites & termes complexes; on notera a( resp. b etc...) ’élément
(an)( tesp. (b)) de S

Pour r > 0, D(0,7) = {z € C, |z] < r}, il s’agit du disque ouvert, centré a l'origine et de rayon r; sa frontiere
se notera C..

Toutes les fonctions considérées sont & valeurs dans C.

1.2 Définitions. Premiers exemples

Nous conviendrons de noter x ( resp. z) une variable réelle (resp. complexe).

Définition 1 Une série entiére de variable réelle (resp. complexe) est une série de fonctions Zun telle
n>0

que : ’ Jda = (an) € S,Vn € N,Vz € R(resp.C), un(z) = anx"(resp.uy(z) = anz"). ‘

Avec un abus de notation circonscrit a ce type de séries de fonctions, on la notera Z anz"(resp. Z anz").
n>0 n>0

La suite a ( unique, bien sir) est la suite des coefficients de la série entiére précédente et, plus précisément,

n €N, a, en est le coefficient d’ordre n (ay est appelé terme constant).

Sy désigne la somme de cette série entiére.‘

Notons d’emblée une évidence :

Remarque 1 Pour toute série entiére Zana:"(resp.Zanz"), S, est au moins définie en 0 et
n>0 n>0

Sa(0) = ag |




Exemple 1 i) Z 2" est une série entiére dont la somme est uniquement définie sur D(0,1) par

n>0
S:z— .
1-2
it) Z nlz" est une série entiére dont la somme n’est définie qu’en 0.
n>0

iti) Les fonctions polynomes de variable réelle ou complexe sont sommes de séries entiéres partout conver-

gentes.

itii) La série entiére E 16™2%" est une série enticre dite lacunaire, car ses coefficients sont nuls pour une
n>0

11
infinité d’indices. Sa somme n’est définie que sur l'intervalle ouvert | — o 5[

1.3 Rayon de convergence

Dans tout ce paragraphe, E anz", E by z" désignent des séries entieéres a variable complexe donc, comme
n>0 n>0
cas particulier z <— x, a variable réelle.

Le but de cette section est de préciser ou délimiter les ensembles sur lesquels une série entiére converge
simplement (on le rappelle, c’est une série de fonctions d’un type particulier).

1.3.1 Le lemme d’Abel

C’est a comprendre et a savoir démontrer : tout en découle.

Proposition 1 Soit zg € C* tel que la suite (anzy)n soit bornée, alors, pour tout r < |zg|, et pour tout
z € D(0,r) la série Z anz" est absolument convergente.
n>0

1.3.2 Définition du rayon de convergence

Désignons par X ’ensemble {r > 0, (a,r"),s0it une suite bornée} ; il s’agit d’une partie non vide (0 y ap-
partient) de R. Des lors :

Définition 2 Le rayon de convergence de la série entiére Z apz" est :
n>0
Dans tous les cas de figure, il sera noté p(z anz") ( resp. p(z anz™)).
n>0 n>0

Il s’agit donc d’un élément de |Ry U {400} |.

sup(X) si X est majoré
400 sinon

Proposition 2 (Caractérisation du rayon de convergence dans les cas extrémes)

i) p(z anz") = +o0o & la suite (anz"™) est bornée pour tout z € K < la série Z anz" (A)CV pour tout
n>0 n>0

ze€C.

(La somme d’une telle série entiére est définie pour toute valeur de la wvariable qu’elle soit réelle ou

complezxe)

it) p(z anz") = 0 < la suite (anz™) n’est pas bornée pour tout z € K*.

Proposition 3 Régionnement du plan complexe et de la droite réelle
On pose R = p(z anz™) < +o0.

i) La série E anz" converge absolument si |z| < R.
it) La série diverge grossiérement si |z| > R.




1.3.3 Intervalle ouvert, disque ouvert de convergence d’une série entiere

On convient que, pour R = +o0, D(0, R) = C.

Définition 3 Soit Soit Z anz" (resp.z anx™ June série entiére de rayon de convergence R € R’ U{+4o0}.
n>0 n>0
D(0, R) est le disque ouvert de convergence de la série entiére Z anz" et Cr en est le cercle d’incertitude
n>0
st R < +00.
| = R, R[ est lintervalle ouvert de convergence de la série entiére Z anx™ et, dans le cas R fini, les points
n>0
£ R en sont les points d’incertitude.
Le comportement d’une série entiére est, quelle qu’elle soit, parfaitement déterminé dans le disque (ou
intervalle) ouvert de convergence et aussi dans l'ouvert C\ D(0,R) ( ou R\ [-R, R]).

Remarque 2 On ne peut rien dire a priori dans la zone d’incertitude. Tout ou presque y est possible. Voila
quelques exemples pour lesquels R =1 :
i) Z 2" diverge en tout point C.
n>0
Z,Tl,
i) Z 2 converge tout point C;.
n>1

n
i11) E — converge en —1 et diverge en 1.
n>1




Chapitre 2

Propriétés du rayon de convergence

Elles sont données pour le cas de la variable complexe (qui contient le cas réel).
On se donne Z anz", Z b,z" deux séries entiéres de rayon de convergence respectif R, et Ry.

n>0 n>0
2.1 Encadrement du rayon de convergence

En revenant a la définition du rayon de convergence, on dispose de cette propriété tres utile pour estimer le
rayon de convergence d’une série entiere.

Proposition 4 Soient (29, 21) € C%
i) Si la suite (anzy) est bornée alors Ry > |zp|.
it) Si la série Z anzy diverge alors R, < |z1].
n>0
OQ L’idéal étant de pouvoir combiner i) et ii) avec |zo| = |z1].

Exemple 2 Soit, pour n > 1, a, = la n-iéme décimale de 7 ; nous voulons déterminer R,.

La suite (a,1" = a,) est bornée puisque une décimale est comprise entre 0 et 9.

La série Z an 1" diverge grossiérement puisque dans le cas contraire la suite d’entiers (ay,) devrait converger
n>0

vers 0 c.a.d stationner sur 0 ce qui impliquerait que ™ soit un rationnel. Donc .

2.2 Influence des coefficients sur le rayon de convergence

Proposition 5 i) Si A € C*,p (Z )\anz"> =p (Z anz”) .
it) Si an, = O(by,) alors p (Z anz") <p (Z bnz") )

(Cas particulier a, = o(by) et |an| < |by| a partir d’un certain rang).
it) Si |an| ~ |by| alors p (Z anz”) =p (Z bnz") ( Résulte de ii))
iii) p (Z npanz”> =p (Z anz"), ce pour tout p € R.

Corollaire 1 |Va € R,p(z n%z") =1

n>1

2.3 Regle de d’Alembert pour les séries entieres

MAMALa regle suivante a pour elle d’étre du type formule mécanique mais ne peut pas toujours s’appliquer
ou n’est pas toujours pertinente (attention aux séries entiéres lacunaires).




Proposition 6 On suppose :
i) qu’a partir d’un certain rang a, # 0,

it) il existe L € Ry U {400} tel que Sl L.
n n—>~+00
1 . 1 1
ALORS :| R, = — | avec les conventions — = +oo, —— = 0.
L 0 +00

!2 n
Exemple 3 Soit a déterminer le rayon de convergence de la série entiére Z M
6 2n+1)!
1)2 (n+1)2 1
En posant, pour tout entier naturel n, a, = (257_31)!, il vient |azzl\ = @n ELR;)L(QL ey — 1 donc, par la

regle de d’Alembert R, = 4.

Exemple 4 Ezxaminons néanmoins une situation ou cette régle est inopérante. Notons, pour n > 1, p, le
n-iéme nombre premier et considérons la série entiére (fortement lacunaire) anxp”.

n>1
n st n est premier

Notons cette série entiére de facon plus conventionnelle E anx", en posant a, = { 0si
sinon

n>0
Comme a, < n pour tout n, R, > 1. Mais la suite (p,) n'étant pas bornée, R, < 1. Finalement

2.4 Effet des opérations algébriques sur les rayons de convergence et
les sommes de séries entieres

2.4.1 Somme et Linéarité

Proposition 7 i) p(Z(an + b,,)z") > min(R,, Ry) avec égalité si R, # Ryp.
n>0

it) De plus ,pour A € C et |z| < min(Rg, Rp) Z an, + Aby) Zanz —i-/\Zb 2"
n=0

2.4.2 Produit de Cauchy %

Définition 4 On appelle produit de Cauchy des séries entiéres Z anz" et Z b, 2" la série entiére Z cn2"”,
n>0 n>0 n>0

n
ot pour tout entier n : ¢, = Z Gy = Z sl
(p,q)EN? p+q=n =

Remarque 3 On observera, en fizant z, qu’il ne s’agit rien d’autre que du produit de Cauchy des deux

séries Z anz" et Z bpz" comme il a été défini dans le chapitre consacré auzx séries. Le résultat suivant
n>0 n>0

n’est donc pas surprenant.

En gardant les notations de la définition précédente :

Proposition 8 i) p(z cnz2") > min(Rg, Ry).
n>0

i) Vz,|z| < min(Rq, Ryp), Z CpE"” = (Z anz”)(z bpz")
n=0 n=0

n=0




Chapitre 3

Propriétés de la somme d’une série
entiere

On se donne une série entiere de variable réelle E apx" de rayon R > 0. On note S sa somme et [
n>0
son intervalle ouvert de convergence.

3.1 Le principe fondamental

Toute ce chapitre repose sur ce résultat.

Théoréme 1 La série entiére g a, " converge normalement sur tout segment de I, son intervalle
n>0
ouvert de convergence

Remarque 4 A On ne simplifiera pas ce théoréeme en confondant la CVN sur tout segment de I et la
CVN sur I, faute cardinale stigmatisée par tous les rapports de jury.
En effet la série entiere Z x", de rayon de convergence 1, ne converge pas normalement sur | —1,1[= 1T
n>0
puisque sup(|z"|) = 1.
xzel

3.2 Continuité de la somme d’une série entiére sur son intervalle ouvert
de convergence

Grace au théoreme C° pour les séries de fonctions et la section précédente, il vient sans peine.

‘Proposition 9 S est continue sur I.

Toujours par le théoreme C¥ pour les séries de fonctions, on dispose du raffinement suivant :

Proposition 10 R < +oo0.
Si la série Z anR" converge absolument alors S est continue sur [—R, R] ; en effet il y a cette fois CVN de
n>0
la série entiére sur [—R, R].
o0 xn
(Par exemple x — Z —5 est continue sur [—1,1])

n=1

Conformément au programme et ce sera la seule intrusion de la variable complexe dans ce chapitre, nous
admettons que :

Proposition 11 Soit Z anz" une série entiére de variable complexe, de rayon de convergence R > 0 et
n>0

de somme S,.

S est continue sur le disque ouvert D(0, R).




3.3 Intégration ou primitivation terme a terme

Grace au théoreme d’intégration terme a terme sur un segment pour une série de fonctions, nous avons :

Proposition 12 Pour tout x € I :
m &9 o0 pntl
apt"dt) = p——.
o Gt = doniy
xn—l—l

(Ce qui sous-entend que la série Z an converge)

n>0

Exemple 5 Cette proposition est une machine a formule ().

1 o
De la relation T = Z x" walable pour x €] — 1,1[, on déduit par intégration sur le segment [0, 5] :

n=0

<1
— n2

Remarque 5 QO Pour utiliser ce résultat, il vous suffira de préciser que vous intégrer terme a terme la
somme d’une série enticre sur un segment inclus dans son intervalle ouvert de convergence.

3.4 Dérivation terme a terme

Le théoréme de dérivation successive pour les séries de fonctions (voir plus loin pour les détails) permet
d’énoncer :

|
Théoréme 2 i) Pour tout p € N*, p(>_ e

(n —p)!
n2p
it) S est C*° sur] — R,R[ et Vp € N*, Vx €] — R, R] :

S®) () = (Z anz™)®?) = Z(anm”)(p) soit

anz"?)=R.

n=0 n=0
= nl e = (n+p)! n = (n+ n
S®)(z) = n—pi” P=3 (n,manﬂﬂ? ou SP)(x) =ply" < » p) UntpT" -
n=p : n=0 ’ n=0
(p)
iii) En particulier Vp > 0,| a, = ) n'(O) |

Preuve 1 1) ]'Dar la  proposition 5 1), i) et i), on déduit succesivement que, en posant
R = p(g ﬁanm”_p), que R’ = p(z; nn—1)..(n—p+1)aza") = p(z nPa,z") = R.
n>p n>0 n>0
iti)Nous prouvons que nous pouvons dériver terme d terme sur I =] — R, R[ a lordre p.
Pour tout entier n, u, : x € I — a,x™ est de classe CP sur I.
La série de fonctions Z Uy CVS sur 1.

n>0
Grice a i) la série de fonctions Z ugq) CVN sur tout segment de I, ce pour tout entier q < p.
n>0
Par le théoréme de dérivation successive pour les séries de fonctions, appliqué a Zun, on peut donc

n>0
affirmer que la somme de cette série de fonctions (a savoir S) est de classe CP sur I et que ses dérivées
s’obtiennent par dérivation terme a terme.
i11) Simple évaluation en 0 dans la formule précédente.R

Remarque 6 O Pour utiliser ce résultat, il vous suffira de préciser que vous dériver terme da terme la
somme d’une série enticre sur son intervalle ouvert de convergence.

On retiendra en outre que le rayon de convergence d’une série entiére est invariant par dérivation (et
primitivation) terme a terme.




Exemple 6 Le rayon de convergence de la série entiére E " étant égal a 1, en dérivant terme da terme

n>0
la somme de cette série entiére sur l'intervalle ouvert | — 1,1[, il vient :
1 (e¢)
Vp e NNVe €] — 1,1[, ———— = Z ntp x" (formule utile en probabilité qui, soit vous est donnée,
A—aptt =\ p

soit vous est proposée en tant que question.)

Une conséquence fondamentale du théoreme précédent est une généralisation d’un fait bien connu concernant
les polynomes (principe des identités algébriques) ; on convient d’appeler voisinage de 0 tout intervalle
ouvert contenant 0.

Théoréme 3 Soient deux séries séries entiéres E anx", E bpx™ dont les sommes coincident au voisinage
n>0 n>0

de 0.

Alors |VYn > 0,a, = b, |.




Chapitre 4

Fonctions développables en série entiere

4.1 Généralités

Définition 5 Soit f définie au voisinage de 0.

f est dite développable en série entiére (DSE) s’il existe une série entiére de rayon de convergence
strictement positif dont la somme coincide avec f au voisinage de 0.

Par le théoréme précédent cette série entiere est alors unique et [’égalité entre f et la somme de cette unique
série entiére (sur un intervalle | —r,r[,r > 0) est le développement en série entiére (DSE) de f sur|—r,r].

o
est DSE sur | — 1,1[ puisque f(x) = Z x" sur cet intervalle (et uniquement

n=0

1
Exemple 7 f : z — 7

sur celui-ci).

4.2 Propriétés des fonctions développables en série entiere

On étudie maintenant le comportement de la notion de fonctions DSE vis a vis de certaines opérations
algébriques.

Proposition 13 Soient f,g DSE sur le méme intervalle I de DSE sur I :
o

@)=Y ane”
n=0
g(z) = Z bz

n=0
i) Alors pour tout A € C, f+ \g est DSE sur I et :

Vo €1, (f+Ag)(@) = D (an + Abp)a™.
n=0
it) fg est DSE sur I et :

n
Ve eI, fg(x) = Z cpx™, ot cp = Z agbn, , ce pour tout n (produit de Cauchy).
n=0 k=0

Remarque 7 A Rien sur le quotient ou la composée de fonctions DSE.

En revanche et en vertu du chapitre précédent :

Proposition 14 Soit f DSE sur l'intervalle I de DSE sur I : f(z) = Z anz”.
n=0

(e.9]

i) Si F est une primitive sur I de f, F est DSE sur I etVx €I : F(x) — F(0) = E (i: 1x"+1.
n
n=0

ii) f' est DSE sur I, son DSE s’obtenant par dérivation terme a terme a partir de celui de f.

10




4.3 Développements en série entiere des fonctions usuelles

o n
Proposition 15 i) Pour a € C, |exp(az) = Z Q—‘x” (x € R).
n!
n=0
) i 220 ‘ N i p2ntl ‘ )
i) | chx = x € R).iit) | shx = — | (zx e R).
= (2n)! = (2n +1)!
)[eosa = (<1 i Syl eR)
) |cosx = —1)" et |sinx = —1)"—|(z € R).
= (2n)! = (2n +1)!
) e ar (1| (s~ 1,1])
v x| e —1)"z x €] —1,1]).
l—z)=%,=0 l+z)=3%,=0
Puis par intégration terme a terme :

00 " 0o "
vi)|{In(1+2)=> (-1)" ' =—|et|ln(l—2) ==Y —| (@€ —1,1]).
n=1 n n=1 n
o x2n+1
vii) | arctan z = ;(fl)"zn = (x €] —1,1]).

o) n—1
—k
vitg) Va € R, | (1 + 2)* = Z (a) z" | (x €] —1,1[), ot on a posé (a) = Mol =F) donc en particulier
n

)-1<(] -

On pourra aussi retenir que pour a € C* :

n=0

] 1 1/a X gn
w) = = 3 (el <le)

4.4 Formule de Taylor avec reste intégral. Application aux DSE

4.4.1 Formule de Taylor avec reste intégral %

On prouve par récuurence et par intégrations par parties.

Théoréme 4 Soient n € N et f de classe ™ sur [a, b].

" k) (g —z)"
f) =3 f '( )(b — o)+ /b (bn')f(n—&—l)(z)dx.
k=0 ’ a )

k
( Formule de Taylor avec reste intégral, a l'ordre n aux points {a,b} ).

4.4.2 Série de Taylor d’une fonction de classe '™ au voisinage de 0

Il découle de la définition précédente et de la fin du chapitre 3 que :

Proposition 16 Soit f DSE sur l'intervalle | — r,r[,r > 0.
i) f est de classe C*° sur | —r,r|.

> f£(n)
it) Le DSE de f sur ]| —rr| est :| f(z) = Z ! n'(o)x" .
n=0 :

Remarque 8 On pourra observer qu’une fonction f DSE est paire (on effectuera la traduction pour les
fonctions impaires) si et seulement si , au voisinage de 0, il existe une suite (ay) de S telle que (au voisinage

de 0) : f(x) = i anz?".
n=0

On verra en exercice qu’il existe des fonctions C™° qui ne sont pas DSE.




Définition 6 Pour f de classe C°° au voisinage de 0, on nomme série de Taylor de f, la série entiére

™) (0
Zf ()xn

Voici le seul critére théorique dont nous disposions pour montrer qu’une fonction de classe C*° au voisinage
de 0 est développable en série entiere. Il s’appuie sur la formule de Taylor avec reste intégral vue plus haut.

Proposition 17 Soit f de classe C™ au voisinage de 0.

Les assertions suivantes sont équivalentes : i) f est DSE en 0

it) La série de Taylor de f converge au voisinage de 0 et sa somme est f.
1 az

i) Ir > 0,¥z €] — 7], —,/ (@ -t f D ()dt — o
n! Jo

n—-+00




Chapitre 5

Applications des séries entieres

A prendre comme des exercices classiques et sur le type desquels on attendra de vous une certaine réactivité.

5.1 Calcul de sommes de séries

Les développements en série entiere usuels permettent, par simple évaluation, le calcul de certaines sommes
de séries.
Traitons un exemple relativement éclairant.

o0
Exemple 8 Déterminer S = Z n?27",
n=0
On consideére pour cela la série entiére Z nz™ dont le rayon de convergence (Corollaire 1) vaut 1. Cette
n>0
série entiére converge pour x = 1/2 puisque 1/2 €] — 1,1[= I ; on justifie ainsi l’existence de S et en

remarquant que n? = n(n — 1) + n, ce pour tout entier naturel n et en posant, pour x € I, T(x Z "
il vient, par dérivation terme a terme sur l’intervalle de convergence de Z ", T"(x) + T'(x Z n
n>0

pour tout x € I.
1

Pour ces mémes x (DSE usuel) : T'(z) = T2 dou T"(z)+T'(x) =
-z

[S=20m

2 1
A—2p (=2

et, en spécialisant :

Dans la méme veine :

n+1

Exemple 9 Prouver que Z = Ge

n=0

5.2 Prouver qu’une fonction de la variable réelle est tres réguliere au
voisinage de 0

La encore regardons sur un exemple ce que les séries entieres apportent a ce type de problématique.

x
et —1°

Vérifier, que convenablement prolongée en 0, cette fonction est de classe C*™ sur R.
Les équivalents usuels imposent de choisir f(0) = 1.

Exemple 10 On note f la fonction défine sur R’y par f(x) =

: . . , 1
La fonction f, ainsi prolongée, ne s’annule pas sur R et nous posons g = —.

o0 xn—l 0 "
Grace au DSFE de l’exponentielle, on a g(x) = e — — , ce pour tout © # 0. Mais on observe
P : g(x) nz::l — Z(n+1)!, p #
(9(0) = 1) que cette égalité reste vraie pour x = 0. Ainsi nous avons prouvé que la fonction g était DSE

sur R donc que g était de classe C*™° sur R. Son inverse qui est parfaitement défini sur R [’est donc aussi
(par propriété élémentaire de telles fonctions). Bilan f est de classe C*° sur RB On remarquera que l'on a
habilement contourné le fait que [’on ne sache rien de l'inverse d’une fonction DSE.
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5.3 Série génératrice associée a une suite

C’est un contexte tres riche dont Centrale a abusé ces derniéres années. Grosso modo il s’agit, une suite
(an) (d’entiers en général et reliée & un probleme (bien souvent combinatoire) digne d’intérét) étant donnée,
de lui associer une série entiére dont la connaissance apportera des informations sur (a,,). Les énoncés vous
préciseront cette série entiere et vous serez amenés a travailler sur celle-ci. Ce qui suit essaie d’illustrer cette
démarche.

Exemple 11 Pour tout entier naturel n, on désigne par c, le nombre de couples (p,q) € N? tels que
p+ 2q = n(c’est, par exemple, le nombre de maniéres de payer n euros avec seulement des piéces de un et

deuzx euros sin >1).
(©.9]

On considére la série entiére Z cnx™ de rayon de convergence 1 puisque 1 < ¢, < (n + 1)2.
n=0
Soient alors les deux séries entiéres de variable réelle (de méme rayon de convergence que la précédente)z x"

n>0
et Z 2",
n>0
Nous désirons en déterminer leur produit de Cauchy. Pour cela on note a,, (resp. by) leur coefficient d’ordre

n . .
. . . 1 t
n. Soient n entier naturel et : d, = E an—pbp. Mais ay—pb, = { Lt

0 sinon
p=0
1l en ressort que d,, = Z 1=c¢,.
(p,q)EN?|p+2g=n
1
Par conséquent la proposition 8 permet d’écrire que Yz € I, | S.(x) = Sq(z)Sp(z) = S ce
—z)(l-=

grace aur DSE usuels.
Par ailleurs (décomposition en éléments simples) et pour les mémes x :

1 1, 1 1
D) = 1(1 . + 1+ 2 + = x)2) ou encore, avec les DSE usuels a nouveau,
1 = 1+ (1) 1
(EsTe=) = nz::O( + (4 ) + n;— )z™. On en déduit (par unicité des coefficients d’une série entiére)
1+ (-1)" 1
que | ¢, = + (4 ) 4 n—2|— , ce pour tout entier n.

5.4 Séries entieres et Equations différentielles linéaires a coefficients po-
lynomiaux

On peut voir les relations entre ces deux notions d’au moins deux manieres.

Les équations différentielles permettent d’obtenir des DSE moyennant le principe de Cauchy (cf théoréme
de Newton sur les DSE usuels).

Certaines équations différentielles, souvent liées a la physique, possédent des solutions DSE et cela peut
suffire le cas échéant.

Exemple 12 (Retour sur ’exponentielle complexe)

/
— oy =0
Fizons z € C et considérons le probléme de Cauchy : z(o) Z_yl
On a directement que f : t — e est solution de ce probléme. Par ailleurs on montre par simple dérivation

zt)"
( ‘) l’est ausst donc, par unicité, du probleme de Cauchy

n:

o
terme a terme que la fonction g : t — Z
n=0

précédent f = g.

Méme point de vue mais plus élaboré :




Exemple 13 Déterminer le DSE de f = (arcsin)?.

Comme la fonction arcsin est DSE sur I =] —1,1][, f Uest aussi et, puisque l'on a déterminé dans la douleur
le DSE de la fonction arcsin on pourrait s’en tirer avec un produit de Cauchy. Mais nous n’aurions les
coefficients de notre DSE que sous la forme d’une somme qu’il semble pénible de simplifier.

Une autre idée consiste a dériver f une premiére fois sur I donc de voir que 2arcsin(z) = V1 — 22f(2)
pour x € I puis en redérivant d’établir que f est solution de (E) : (1 — 2%)y" — zy’ = 2.

Nous allons chercher les solutions DSE de (E) sur I qui sont paires (f bénificiant de cette double qualité).
Pour cela on détermine les solutions DSE impaires de (E’) sur I : (1 — z%)y — 2y = 2 sous la forme

o
YT — Z anz® L.

n=0
Par dérivation terme da terme sur I on a, pour tout x € I :
(0.) [o¢]

- Z(2n+2)ana:2”+2 + Z (2n+1)a, 2™ = 2. Soit aussi aprés changement d’indice dans la premiére somme
n=0 n=0

et regroupement

oo

Z(—(2n)an_1 + (21 + 1))a,z®™ + ag = 2 donc par unicité des coefficients d’une série entiére il vient :

n=1

2 et ¥n > 1 2n Ces relations donnent, simple ré PG ol
=S =] 1. T =] . s
ag (& n =1, an 7 + 1an 1 €S retarions aonnent, Smple TeCurrence | Gp (Zn T 1)' uis, pa
stmpte primaetivation = ) xTr) = T

per 2 (2n + 2)!

A titre d’exercice le second point de vue :

Exemple 14 Chercher les solutions DSE de (E) : xy" + ' + xy = 0 (Equation de Bessel)
(_1)11:1;271,

o0
On devrait trouver x — ag Z W’
n!

n=0

o ag € R. On remarquera que ces solutions le sont sur R.




