Informatique commune Lycee Bellevue - TP

TP10.2— JEUDE LA VIE

EXPLICATION WIKIPEDIA TRES BIEN FAITE : HTTPS://FR.WIKIPEDIA.ORG/WIKI/JEU_DE_LA_VIE

OBJECTIFS
e Comprendre les régles du Jeu de la Vie de Conway.
e Manipuler des grilles et apprendre a coder une simulation discrete.
e Concevoir des visualisations simples.
e Etudier la complexité temporelle d’une itération.

1. Présentation du probleme

Le Jeu de la Vie est un automate cellulaire a deux dimensions. Une cellule peut étre
vivante ou morte et évolue selon des regles locales en fonction de ses voisins.

Chague cellule posséde 8 voisins (adjacence de Moore).
Pour une cellule vivante :

- Elle survit si elle a 2 ou 3 voisins vivants.

- Elle meurt (sous-population ou surpopulation) sinon.
Pour une cellule morte :

- Elle nait si elle a exactement 3 voisins vivants.

On peut également formuler cette évolution ainsi :

80 » Siune cellule a exactement trois voisines vivantes, elle est vivante a 'étape suivante.

C'est le cas de la cellule verte dans la configuration de gauche ;

« Siune cellule a exactement deux voisines vivantes, elle reste dans son état actuel a I'étape suivante.

Dans le cas de la configuration de gauche, la cellule située entre les deux cellules vivantes reste morte a I'étape suivante ;

880- si une cellule a strictement moins de deux ou strictement plus de trois voisines vivantes, elle est morte a I'étape suivante.

C’est le cas de la cellule rouge dans la configuration de gauche.

2. Premieres étapes

2.1. Représentation de la grille

1. Représenter la grille comme une matrice de 0 (mort) et 1 (vivant).
2. Ecrire une fonction afficher(grille) affichant la grille de facon lisible.

Fabien Hospital 1/9

https://fr.wikipedia.org/wiki/Jeu_de_la_vie

Informatique commune Lycee Bellevue - TP

2.2. Comptage des voisins

Ecrire une fonction :

def nb_voisins_vivants(grille, i, j):

qui renvoie le nombre de voisins vivants de la cellule (i, j).
2.3. Calcul de la génération suivante

Ecrire une fonction :

def prochaine_generation(grille):

qui renvoie une nouvelle grille correspondant a ’évolution de toutes les cellules.
2.4. Simulation

Ecrire une fonction :

def simulation(grille, n):

qui affiche successivement n générations.

3. Tests

Tester avec :

- le clignotant (blinker), —

- le planeur (glider).

@

Analyse algorithmique

1. Donner la complexité temporelle d’un calcul de génération.
2. Proposer une amélioration possible.

Fabien Hospital 2/9

Informatique commune Lycee Bellevue - TP

Correction

1. Comptage des voisins

def nb_voisins_vivants(grille, i, j):
n, m = len(grille), len(grille[©@])
voisins = [(-1,-1), (-1,0), (-1,1),

(@)'1)) (@:1))
(1J_1)) (116)) (1)1)]
c =20
for di, dj in voisins:
ni, nj =i+ di, j + dj
if @ <=ni < nand 6 <= nj < m:
c += grille[ni][nj]
return c

2. Génération suivante

def prochaine_generation(grille):
n, m = len(grille), len(grille[©])
nouvelle = [[@]*m for _ in range(n)]
for i in range(n):
for j in range(m):
v = nb_voisins_vivants(grille, i, j)
if grille[i][]j] == 1:
if v in (2, 3):
nouvelle[i][7]

I
=

else:
if v ==
nouvelle[i][7]
return nouvelle

]
=

3. Simulation

import time

def afficher(grille):
for ligne in grille:
print(".join('l' if x else
print()

" for x in ligne))

def simulation(grille, n):
for _ in range(n):
afficher(grille)
grille = prochaine_generation(grille)
time.sleep(0.2)

Fabien Hospital 3/9

Informatique commune Lycee Bellevue - TP

4. Exemples

Clignotant

clignotant = [
[0,0,0,0,0],
[0,0,0,0,0],
[@)1) 1) 1)@])
[0,0,0,0,0],
[0,0,0,0,0]

]

Planeur

glider = [
[@.)1.)@])
[@)@J 1] J
[1,1,1]

]

5. Complexité
Pour une grille de taillen x m:
- Pour chaque cellule, on regarde 8 voisins : colit constant.

- Total par génération : O(nm).

6. Simulation graphique avec Tkinter

Dans cette section, une visualisation graphique du Jeu de la Vie est réalisée en utilisant
Tkinter, qui offre une interface graphique.

Objectifs

e Afficher une grille plus grande (ex : 50x50).
e Représenter chaque cellule par un rectangle rempli (vivante) ou vide (morte).
e Mettre a jour dynamiquement Uaffichage a chaque génération.

Code proposé par ChatGPT !!

import tkinter as tk
import random

CELL_SIZE = 12
DELAY = 100 # en millisecondes

Création de La fenétre Tkinter
def init_tk(n, m):
root = tk.Tk()

Fabien Hospital 4/9

Informatique commune Lycee Bellevue - TP

root.title("Jeu de la Vie - Simulation Tkinter™")

canvas = tk.Canvas(root, width=m * CELL_SIZE, height=n * CELL_SIZE, bg="w
hite")

canvas.pack()

return root, canvas

Dessine une cellule vivante ou morte
def dessine_grille(canvas, grille):
canvas.delete("all")
n, m = len(grille), len(grille[©@])
for i in range(n):
for j in range(m):
x1 = j * CELL_SIZE

yl = i * CELL_SIZE
x2 = x1 + CELL_SIZE
y2 = y1 + CELL_SIZE

if grille[i][]] == 1:
canvas.create_rectangle(xl, yl, x2, y2, fill="black", outline

=Ilgr‘eyll)
else:
canvas.create_rectangle(xl, yl, x2, y2, fill="white", outline

="grey")

Lancement de La simulation Tkinter
def simulation_tk(grille):
n, m = len(grille), len(grille[©])
root, canvas = init_tk(n, m)

def update():
nonlocal grille
dessine_grille(canvas, grille)
grille = prochaine_generation(grille)
root.after(DELAY, update)

update()
root.mainloop()

Extension : Interface interactive complete
Vous pouvez enrichir la simulation Tkinter avec une interface plus avancée comprenant:

e Bouton Start / Pause

e Bouton Réinitialiser (grille aléatoire)

e Editeur de grille au clic : cliquer pour inverser U'état d’une cellule
e Choix de la taille de la grille ou de la taille des cellules

Code complet proposé orienté objet (version enrichie avec vitesse + motifs)

Ce code ajoute :

Fabien Hospital 5/9

Informatique commune Lycee Bellevue - TP

- un slider pour régler la vitesse (temps entre deux générations),

- un menu déroulant pour insérer automatiqguement des motifs célebres : - Glider - Pulsar -
LWSS (Lightweight Spaceship)

import tkinter as tk
import random

CELL_SIZE = 12

--- Motifs céléebres ---
MOTIFS = {
"Glider": [
[@Jl)@]J
[@J@.)l].)
[1,1,1]
1
"Pulsar":
(e,
[9,
[1,
[1,
[1,
[e,
(e,

-
- [|
-
-
-
-
-
-
-
-

-
-

. -
. -
. -
. -
. -
. -
. -
. -
. -
. -
. -
. -

-
-
-
-
-
-
-
-
-
-
-
-

. -
. -
. -
. -
. -
. -
. -
. -
. -
. -
. -
. -

P OOOORFROROOOO R

P OOOORFRROROOOO R

OCO0ORRPRRFROOCORRLRRLROO®
. .

-
-
-
-
-
-
-
-
-
-
-
-

- -

{ Ty NSy Sy Sy SNy NSy SNy Sy Ny NNy Ny Ny)
-

L B e I e B s W s I |
OO0 RRERO
L S

L Y

. v .

v v .

- v .

- v .

. v .

. v .

. v .

. v .

. v .

. v .

15

"LWSS": [
[0,1,1,1,1],
[1J@)9Je)1]J
[0,0,0,0,1],
[1,0,0,1,0]

}

class JeuDelLaVie:
def __init_ (self, n=50, m=50):
self.n = n
self.m =m
self.grille = [[random.randint(©, 1) for _ in range(m)] for _ in rang
e(n)]
self.running = False
self.delay = 120

--- Fenétre ---

Fabien Hospital 6/9

Informatique commune Lycee Bellevue - TP

self.root = tk.Tk()
self.root.title("Jeu de la Vie — Interface avancée")

--- Canvas ---

self.canvas = tk.Canvas(self.root, width=m * CELL_SIZE, height=n * CE
LL_SIZE, bg="white")

self.canvas.grid(row=0, column=0, columnspan=4)

self.canvas.bind("<Button-1>", self.toggle_cell)

--- Boutons ---

tk.Button(self.root, text="Start", command=self.start).grid(row=1, co
lumn=0)

tk.Button(self.root, text="Pause", command=self.pause).grid(row=1, co
lumn=1)

tk.Button(self.root, text="Réinitialiser", command=self.reset).grid(r
ow=1, column=2)

--- Slider vitesse ---
self.speed slider = tk.Scale(self.root, from =20, to=500, orient=tk.H
ORIZONTAL,
label="Vitesse (ms)", command=self.updat
e _speed)
self.speed slider.set(self.delay)
self.speed slider.grid(row=2, column=9, columnspan=2)

--- Menu motifs ---
self.motif var = tk.StringVar(self.root)
self.motif var.set("Insérer un motif")

motif_menu = tk.OptionMenu(self.root, self.motif_var, *MOTIFS.keys(),
command=self.insert_motif)
motif menu.grid(row=2, column=2, columnspan=2)

self.update_canvas()

--- Interaction souris ---

def toggle cell(self, event):
i = event.y // CELL_SIZE
j = event.x // CELL_SIZE
self.grille[i][]j] = 1 - self.grille[i][]]
self.update_canvas()

--- Interaction vitesse ---
def update_speed(self, value):
self.delay = int(value)

--- Gestion motifs ---
def insert _motif(self, motif_name):
motif = MOTIFS[motif_name]

Fabien Hospital 7/9

Informatique commune Lycee Bellevue - TP

mi, mj = len(motif), len(motif[@])
offset_i = (self.n - mi) // 2
offset_j = (self.m - mj) // 2
for i in range(mi):
for j in range(mj):
self.grille[offset_i + i][offset_j + j] = motif[i][]]
self.update canvas()

--- Gestion simulation ---
def start(self):
if not self.running:
self.running = True
self.run()

def pause(self):
self.running = False

def reset(self):
self.grille = [[random.randint(@, 1) for _ in range(self.m)] for _ in
range(self.n)]
self.update_canvas()

--- Affichage ---
def update_canvas(self):
self.canvas.delete("all")
for i in range(self.n):
for j in range(self.m):
x1, yl = j * CELL_SIZE, i * CELL_SIZE
x2, y2 = x1 + CELL_SIZE, y1 + CELL_SIZE
color = "black" if self.grille[i][j] == 1 else "white"

self.canvas.create_rectangle(xl, yl, x2, y2, fill=color, outl
ine="grey")

--- Automate ---
def nb_voisins(self, i, j):
voisins = [('1)'1)1 ('1)@)) ('1)1)) (@J-l)) (@)1)J (1J-1)) (1)@)J (1J
1]
return sum(self.grille[i+di][j+dj]
for di, dj in voisins
if 0 <= i+di < self.n and 9 <= j+dj < self.m)

def next_gen(self):
new = [[0]*self.m for _ in range(self.n)]
for i in range(self.n):
for j in range(self.m):
v = self.nb_voisins(i, j)
if self.grille[i][]] == 1:
new[i][j] = 1 if v in (2,3) else ©
else:
new[i][j] = 1 if v == 3 else ©

Fabien Hospital 8/9

Informatique commune

Lycee Bellevue - TP

self.grille = new

--- Boucle principale ---
def run(self):
if self.running:
self.next_gen()
self.update_canvas()
self.root.after(self.delay, self.run)

def launch(self):
self.root.mainloop()

Exemple d'utilisation :
app = JeuDelLaVie(50, 50)
app.launch()

7. Améliorations possibles

e Changer la méthode d’initialisation en mettant la grille blanche
e Essayer de faire un canon a glider!

e Ne mettre ajour que les cellules vivantes et leurs voisines.

e Utiliser des structures de type set pour un univers infini ...

Fabien Hospital

9/9

