
Informatique commune Lycee Bellevue - TP

Fabien Hospital 1/9

TP10.2– JEU DE LA VIE
EXPLICATION WIKIPEDIA TRES BIEN FAITE : HTTPS://FR.WIKIPEDIA.ORG/WIKI/JEU_DE_LA_VIE

OBJECTIFS
• Comprendre les règles du Jeu de la Vie de Conway.
• Manipuler des grilles et apprendre à coder une simulation discrète.
• Concevoir des visualisations simples.
• Étudier la complexité temporelle d’une itération.

1. Présentation du problème

Le Jeu de la Vie est un automate cellulaire à deux dimensions. Une cellule peut être
vivante ou morte et évolue selon des règles locales en fonction de ses voisins.

Chaque cellule possède 8 voisins (adjacence de Moore).

Pour une cellule vivante :

- Elle survit si elle a 2 ou 3 voisins vivants.

- Elle meurt (sous-population ou surpopulation) sinon.

Pour une cellule morte :

- Elle naît si elle a exactement 3 voisins vivants.

2. Premières étapes

2.1. Représentation de la grille
1. Représenter la grille comme une matrice de 0 (mort) et 1 (vivant).
2. Écrire une fonction afficher(grille) affichant la grille de façon lisible.

https://fr.wikipedia.org/wiki/Jeu_de_la_vie

Informatique commune Lycee Bellevue - TP

Fabien Hospital 2/9

2.2. Comptage des voisins

Écrire une fonction :

def nb_voisins_vivants(grille, i, j):
 ...

qui renvoie le nombre de voisins vivants de la cellule (i, j).

2.3. Calcul de la génération suivante

Écrire une fonction :

def prochaine_generation(grille):
 ...

qui renvoie une nouvelle grille correspondant à l’évolution de toutes les cellules.

2.4. Simulation

Écrire une fonction :

def simulation(grille, n):
 ...

qui affiche successivement n générations.

3. Tests

Tester avec :

- le clignotant (blinker),

- le planeur (glider).

 Analyse algorithmique
1. Donner la complexité temporelle d’un calcul de génération.
2. Proposer une amélioration possible.

Informatique commune Lycee Bellevue - TP

Fabien Hospital 3/9

Correction
1. Comptage des voisins
def nb_voisins_vivants(grille, i, j):
 n, m = len(grille), len(grille[0])
 voisins = [(-1,-1), (-1,0), (-1,1),
 (0,-1), (0,1),
 (1,-1), (1,0), (1,1)]
 c = 0
 for di, dj in voisins:
 ni, nj = i + di, j + dj
 if 0 <= ni < n and 0 <= nj < m:
 c += grille[ni][nj]
 return c

2. Génération suivante
def prochaine_generation(grille):
 n, m = len(grille), len(grille[0])
 nouvelle = [[0]*m for _ in range(n)]
 for i in range(n):
 for j in range(m):
 v = nb_voisins_vivants(grille, i, j)
 if grille[i][j] == 1:
 if v in (2, 3):
 nouvelle[i][j] = 1
 else:
 if v == 3:
 nouvelle[i][j] = 1
 return nouvelle

3. Simulation
import time

def afficher(grille):
 for ligne in grille:
 print(''.join('█' if x else ' ' for x in ligne))
 print()

def simulation(grille, n):
 for _ in range(n):
 afficher(grille)
 grille = prochaine_generation(grille)
 time.sleep(0.2)

Informatique commune Lycee Bellevue - TP

Fabien Hospital 4/9

4. Exemples

Clignotant
clignotant = [
 [0,0,0,0,0],
 [0,0,0,0,0],
 [0,1,1,1,0],
 [0,0,0,0,0],
 [0,0,0,0,0]
]

Planeur
glider = [
 [0,1,0],
 [0,0,1],
 [1,1,1]
]

5. Complexité

Pour une grille de taille n × m :

- Pour chaque cellule, on regarde 8 voisins : coût constant.

 - Total par génération : O(nm).

6. Simulation graphique avec Tkinter

Dans cette section, une visualisation graphique du Jeu de la Vie est réalisée en utilisant
Tkinter, qui offre une interface graphique.

Objectifs
• Afficher une grille plus grande (ex : 50×50).
• Représenter chaque cellule par un rectangle rempli (vivante) ou vide (morte).
• Mettre à jour dynamiquement l’affichage à chaque génération.

Code proposé par ChatGPT !!
import tkinter as tk
import random

CELL_SIZE = 12
DELAY = 100 # en millisecondes

Création de la fenêtre Tkinter
def init_tk(n, m):
 root = tk.Tk()

Informatique commune Lycee Bellevue - TP

Fabien Hospital 5/9

 root.title("Jeu de la Vie - Simulation Tkinter")
 canvas = tk.Canvas(root, width=m * CELL_SIZE, height=n * CELL_SIZE, bg="w
hite")
 canvas.pack()
 return root, canvas

Dessine une cellule vivante ou morte
def dessine_grille(canvas, grille):
 canvas.delete("all")
 n, m = len(grille), len(grille[0])
 for i in range(n):
 for j in range(m):
 x1 = j * CELL_SIZE
 y1 = i * CELL_SIZE
 x2 = x1 + CELL_SIZE
 y2 = y1 + CELL_SIZE
 if grille[i][j] == 1:
 canvas.create_rectangle(x1, y1, x2, y2, fill="black", outline
="grey")
 else:
 canvas.create_rectangle(x1, y1, x2, y2, fill="white", outline
="grey")

Lancement de la simulation Tkinter
def simulation_tk(grille):
 n, m = len(grille), len(grille[0])
 root, canvas = init_tk(n, m)

 def update():
 nonlocal grille
 dessine_grille(canvas, grille)
 grille = prochaine_generation(grille)
 root.after(DELAY, update)

 update()
 root.mainloop()

Extension : Interface interactive complète

Vous pouvez enrichir la simulation Tkinter avec une interface plus avancée comprenant :

• Bouton Start / Pause
• Bouton Réinitialiser (grille aléatoire)
• Éditeur de grille au clic : cliquer pour inverser l’état d’une cellule
• Choix de la taille de la grille ou de la taille des cellules

Code complet proposé orienté objet (version enrichie avec vitesse + motifs)

Ce code ajoute :

Informatique commune Lycee Bellevue - TP

Fabien Hospital 6/9

- un slider pour régler la vitesse (temps entre deux générations),

- un menu déroulant pour insérer automatiquement des motifs célèbres : - Glider - Pulsar -
LWSS (Lightweight Spaceship)

import tkinter as tk
import random

CELL_SIZE = 12

--- Motifs célèbres ---
MOTIFS = {
 "Glider": [
 [0,1,0],
 [0,0,1],
 [1,1,1]
],
 "Pulsar": [
 [0,0,1,1,1,0,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,0],
 [1,0,0,0,0,1,0,1,0,0,0,0,1],
 [1,0,0,0,0,1,0,1,0,0,0,0,1],
 [1,0,0,0,0,1,0,1,0,0,0,0,1],
 [0,0,1,1,1,0,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,0,0,0,1,1,1,0,0],
 [1,0,0,0,0,1,0,1,0,0,0,0,1],
 [1,0,0,0,0,1,0,1,0,0,0,0,1],
 [1,0,0,0,0,1,0,1,0,0,0,0,1],
 [0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,0,0,0,1,1,1,0,0]
],
 "LWSS": [
 [0,1,1,1,1],
 [1,0,0,0,1],
 [0,0,0,0,1],
 [1,0,0,1,0]
]
}

class JeuDeLaVie:
 def __init__(self, n=50, m=50):
 self.n = n
 self.m = m
 self.grille = [[random.randint(0, 1) for _ in range(m)] for _ in rang
e(n)]
 self.running = False
 self.delay = 120

 # --- Fenêtre ---

Informatique commune Lycee Bellevue - TP

Fabien Hospital 7/9

 self.root = tk.Tk()
 self.root.title("Jeu de la Vie — Interface avancée")

 # --- Canvas ---
 self.canvas = tk.Canvas(self.root, width=m * CELL_SIZE, height=n * CE
LL_SIZE, bg="white")
 self.canvas.grid(row=0, column=0, columnspan=4)
 self.canvas.bind("<Button-1>", self.toggle_cell)

 # --- Boutons ---
 tk.Button(self.root, text="Start", command=self.start).grid(row=1, co
lumn=0)
 tk.Button(self.root, text="Pause", command=self.pause).grid(row=1, co
lumn=1)
 tk.Button(self.root, text="Réinitialiser", command=self.reset).grid(r
ow=1, column=2)

 # --- Slider vitesse ---
 self.speed_slider = tk.Scale(self.root, from_=20, to=500, orient=tk.H
ORIZONTAL,
 label="Vitesse (ms)", command=self.updat
e_speed)
 self.speed_slider.set(self.delay)
 self.speed_slider.grid(row=2, column=0, columnspan=2)

 # --- Menu motifs ---
 self.motif_var = tk.StringVar(self.root)
 self.motif_var.set("Insérer un motif")

 motif_menu = tk.OptionMenu(self.root, self.motif_var, *MOTIFS.keys(),
command=self.insert_motif)
 motif_menu.grid(row=2, column=2, columnspan=2)

 self.update_canvas()

 # --- Interaction souris ---
 def toggle_cell(self, event):
 i = event.y // CELL_SIZE
 j = event.x // CELL_SIZE
 self.grille[i][j] = 1 - self.grille[i][j]
 self.update_canvas()

 # --- Interaction vitesse ---
 def update_speed(self, value):
 self.delay = int(value)

 # --- Gestion motifs ---
 def insert_motif(self, motif_name):
 motif = MOTIFS[motif_name]

Informatique commune Lycee Bellevue - TP

Fabien Hospital 8/9

 mi, mj = len(motif), len(motif[0])
 offset_i = (self.n - mi) // 2
 offset_j = (self.m - mj) // 2
 for i in range(mi):
 for j in range(mj):
 self.grille[offset_i + i][offset_j + j] = motif[i][j]
 self.update_canvas()

 # --- Gestion simulation ---
 def start(self):
 if not self.running:
 self.running = True
 self.run()

 def pause(self):
 self.running = False

 def reset(self):
 self.grille = [[random.randint(0, 1) for _ in range(self.m)] for _ in
range(self.n)]
 self.update_canvas()

 # --- Affichage ---
 def update_canvas(self):
 self.canvas.delete("all")
 for i in range(self.n):
 for j in range(self.m):
 x1, y1 = j * CELL_SIZE, i * CELL_SIZE
 x2, y2 = x1 + CELL_SIZE, y1 + CELL_SIZE
 color = "black" if self.grille[i][j] == 1 else "white"
 self.canvas.create_rectangle(x1, y1, x2, y2, fill=color, outl
ine="grey")

 # --- Automate ---
 def nb_voisins(self, i, j):
 voisins = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,
1)]
 return sum(self.grille[i+di][j+dj]
 for di, dj in voisins
 if 0 <= i+di < self.n and 0 <= j+dj < self.m)

 def next_gen(self):
 new = [[0]*self.m for _ in range(self.n)]
 for i in range(self.n):
 for j in range(self.m):
 v = self.nb_voisins(i, j)
 if self.grille[i][j] == 1:
 new[i][j] = 1 if v in (2,3) else 0
 else:
 new[i][j] = 1 if v == 3 else 0

Informatique commune Lycee Bellevue - TP

Fabien Hospital 9/9

 self.grille = new

 # --- Boucle principale ---
 def run(self):
 if self.running:
 self.next_gen()
 self.update_canvas()
 self.root.after(self.delay, self.run)

 def launch(self):
 self.root.mainloop()

Exemple d'utilisation :
app = JeuDeLaVie(50, 50)
app.launch()

7. Améliorations possibles
• Changer la méthode d’initialisation en mettant la grille blanche
• Essayer de faire un canon à glider !
• Ne mettre à jour que les cellules vivantes et leurs voisines.
• Utiliser des structures de type set pour un univers infini …

