teaching sciences for innovation

Proposition de corrigé

Concours : Concours Commun INP
Année : 2025
Filiere : PSI

Epreuve : Informatique

Ceci est une proposition de corrigé des concours de CPGE, réalisée bénévolement
par des enseignants de Sciences Industrielles de l'Ingénieur et d’Informatique,
membres de [I'UPSTI (Union des Professeurs de Sciences et Techniques
Industrielles).

La distribution et la publication de ce
document sont strictement interdites !

Conditions de diffusion

Ce document n'a pas vocation a étre diffusé, et sa consultation est exclusivement
réservée aux adhérents de 'UPSTI.

Les adhérents peuvent en revanche s’en inspirer librement pour toute utilisation
pédagogique.

Si vous constatez que ce document est disponible en téléchargement sur un site
tiers, veuillez s’il vous plait nous en informer a cette adresse, afin que nous
puissions protéger efficacement le travail de nos adhérents.

Licence et Copyright

Toute représentation ou reproduction (méme partielle) de ce document faite sans
'accord de 'UPSTI est interdite. Seuls le téléchargement et la copie privée a usage
personnel sont autorisés (protection au titre des droits d’auteur).

L'équipe UPSTI

©UPSTI - Lycée Chaptal 45 bvd des Batignolles 75008 PARIS - www.upsti.fr

http://www.upsti.fr/
https://europa.eu/youreurope/business/running-business/intellectual-property/copyright/index_fr.htm
mailto:webmaster@upsti.fr
http://www.upsti.fr/
http://www.upsti.fr/

CCINP - PSI - Info Gestion de randonnées

Session 2025

Gestion de randonnées

Corrigé UPSTI

1 Gestion des randonnées dans une base de données

Question 1

L’attribut Titre ne peut probablement pas étre une clé primaire pour la table Randonnee car plusieurs ran-

données peuvent avoir le méme nom. L’attribut Id peut étre une clé primaire.

Question 2

L’attribut IdAuteur est une clé étrangere de la table Randonnee car elle peut étre utilisée pour faire une

jointure avec la table Auteur.

Question 3

SELECT Titre, Lieu, Distance FROM Randonnee
WHERE Type=’Pied’ ;

Question 4

SELECT IdAuteur, Count(*) AS C FROM Randonnee
WHERE Niveau = 3 AND Type=’Pied’
GROUP BY IdAuteur

SECECT BY C DESC ;
ORDER

Question 5

SELECT Pseudo, Titre FROM Auteur
JOIN Randonnee ON Auteur.Id=Randonnee.IdAuteur ;

Question 6

SELECT Nom, Prenom FROM Randonnee
JOIN Auteur ON IdAuteur=Auteur.Id
WHERE Type=’Cheval’

GROUP BY Auteur.Id

ORDER BY COUNT(*) DESC

LIMIT 1 ;

2 Quelques calculs de dénivelés

Question 7

Import gpxpy

Union des Professeurs de Sciences et Techniques Industrielles
© UPSTI - Toute reproduction interdite sans I’autorisation de ’'UPSTI

UPST:

Page 1

https://www.upsti.fr
https://www.upsti.fr
ORDER

CCINP - PSI - Info Gestion de randonnées Session 2025

Question 8

La valeur numérique renvoyée par le code est 105. Il s’agit de 'atitude moyenne de l'itinéraire.
Question 9

La compléxité de la fonction mystere est O(n) avec n la longueur de la liste iti.

Question 10

def altitude_maximale(iti)
maxi=iti[0] [2]
for i in range(l,len(iti))
if itili] [2]>maxi:
maxi=itil[i] [2]
return maxi

Question 11

def denivele_global(iti)
return altitude_maximale(iti)-iti[0] [2]

Question 12

def denivele_positif_cumule(iti):
den=0
for i in range(len(iti)-1):
if itili 4+ 11[2]-iti[i][2]>0 :
den + =iti[i + 1] [2]-iti[i] [2]
return den

Question 13

def alt_glissante(liste_alt,p)

L_lissee=[]

n=len(liste_alt)

for i in range(n):
moy=0
for j in range(min(p-1,n-i-1) + 1)

moy + =liste_alt[i + j]

L_lissee.append(moy/(j + 1))

return L_lissee

Question 14
La complexité de la fonction est O(np).
Question 15

Les variables latref et longref sont des listes.

La liste latref contient la liste des latitudes des points de référence et la liste longref celle des longitudes
des point de références.

Les élements de ces deux listes constituent les clés du dictionnaires dem.

Question 16

def auxiliaire(x:list,y:list)->list

def principal(x:1list)->list

La fonction auxliaire prend en argument deux listes triées, puis les fusionne. Elle renvoie la fusion des deux
listes pour ne former qu’une liste triée. La fonction principal prend une liste en argument, et renvoie la liste
triée.

Union des Professeurs de Sciences et Techniques Industrielles

Page 2
© UPSTI - Toute reproduction interdite sans I’autorisation de ’'UPSTI age

UPST)

https://www.upsti.fr
https://www.upsti.fr

CCINP - PSI - Info Gestion de randonnées Session 2025

Question 17
Récursif et Diviser pour mieux régner
Question 18

La fonction principal est composée d’'un cas général et d'un cas terminal. Le cas terminal est utilisé lors que
la liste ne contient aucun ou un seul élément. Dans le cas général, la fonction principal s’appelle elle-méme avec
des intervalles de plus en plus petit. Au bout d’un moment, elle s’appelle avec une liste avec 0 ou 1 élément
qui correspond au cas terminal.

Question 19

Il s’agit d’un tri fusion. La liste est coupé en deux. Chaque sous-liste est triée a I’aide du tri fusion puis les 2
listes triées sont fusinnées.

Question 20

5 : ind_deb=0
6 :ind_fin=len(liste_ref)-1
8 : k=(ind_fin + ind_deb)//2
10 : ind_fin=k
12 : ind_deb=k
15 : return liste_ref[ind_fin]
17 : return liste_ref [ind_deb]
Question 21
def standardise(liste_parcours)
itineraire_s=[]
for(lat,long,alt) in liste_parcours
lat_s=ref(lat,lat_ref)
long_s=ref (lat,long_ref)
alt_s=dem[(lat,long)]
itineraire_s.append([lat_s,long_s,alt_s])
return itineraire_s

Question 22

La fonction étudie tous les sommets voisins du sommet sTraite (le sommet & traiter) et choisi celui qui est le
plus proche.
Il s’agit d’un algorithme glouton.

Question 23
[Ja),)CJ’ 7d),)e),)fJ], 8
Question 24

Le programme ne permet pas de trouver le chemin de dificulté cumulée minimale. Dans le cas de 'exemple, le
chemin de difficulté cumulée minimale est [’a’, ’b’, ’d’, ’e’, ’f’] avec une difficulté de 7.

Question 25

Union des Professeurs de Sciences et Techniques Industrielles
© UPSTI - Toute reproduction interdite sans I’autorisation de ’'UPSTI

UPST)

Page 3

https://www.upsti.fr
https://www.upsti.fr

CCINP - PSI - Info Gestion de randonnées Session 2025

distance
Etape sTraite a b c d e f aVisiter
Initialisation 0,a| X X X X X [’a’]
1 a 0O,a|3,a|2,a|4,a| X X [’b’,’c?,%d’]
2 b 0,a|3,a|2,a|4,a| X X [’b’,?d’]
3 c 0, 3,a|2,a|4,a|8,b| X [’d’,’e’]
4 d 0, 3,a| 2,a|4,a|5,d]| 8,d [’e’,’f’]
5 e O,a|3,a|2,a|4,a|5,d]| 6,e [’f’]

Question 26

8 : while chemin[-1]'!= sInit

9 : chemin.append(distance [chemin[-1]] [1])
10 : non nécessaire

15 : distance[sFin] [0]

Question 27

Il est possible de supprimer le test d’appartenance de la ligne 14. Dans ce cas, chaque sommet non visité v
voisin du sommet s sera ajouté dans la liste avisiter et il sera visité plusieurs fois, ce qui n’a pas d’incidence
sur le dictionnaire créé.

Remarque : le dictionnaire créé est le méme mais ¢a semble assez béte de visiter plusieurs fois le méme sommet.
Je ne vois pas d’autres réponses a part celle-1a

Question 28

Lors de ’appel dijkstra(Gl,’al’,’j1’) tous les sommets sont visités. Lors de ’appel dijkstra(Gl,’j1’,%al’),
seuls les sommets j1, g1, cl et al sont visités.

Question 29

distanceF |distanceB

Etape | Traité a b € d e f
Init. 0,aloo,f | 00,aloc0,f | co,alee,f | 00,al00,f | 0o,alc0,f | 0o,al0,f
1 a,F | 0,aloco,f | 3,a|o0,f | 2,alc0,f | 4,alc0,f | o0,a|l,f | 00,a|0,f
2 f,B | 0,alo0,f | 3,ajo0,f | 2,alc0,f | 4,al4,f | oo,all,f | 00,al0,f
3 e,B | 0,alc0,f | 3,a|6,e | 2,alc0,f | 4,a|2,e | oo,all,f | 00,al0,f
4 d,B 0,al6,d | 3,al4,d | 2,al6,d | 4,a]2,e | o0,a|l,f | c0,a|0,f

Etape | Fmin | Bmin | BFmin aVisiterF aVisiterB

Init 0 0 00 [’a’] [0f°]

1 2 0 00 [’b’,’c’,’d’] [0f°]

2 2 1 8 [’b’,’c’,’d’] [’d’,’e’]

3 2 2 6 [’b?,%c?,’d’] [’d’,’b’]

4 2 4 6 [’b’,’c’,’d’] | [’b?,’a’,’c’]

Question 30

Renvoyer la quantité BFmin des qu'un sommet a été atteint par les recherches backward et forward permet de
trouver le chemin de longueur minimale.

L’algorithme permet de connaitre le chemin le plus court de Sd (sommet de départ) au sommet intermédiaire
ainsi que le chemin le plus court de Sf (sommet final) & ce méme sommet intermédiaire. Cela permet donc de
connaitre le chemin le plus court de Sd a Sf en passant par le sommet intermédiaire. Le fait de toujours partir

Union des Professeurs de Sciences et Techniques Industrielles
© UPSTI - Toute reproduction interdite sans I’autorisation de ’'UPSTI

UPST)

Page 4

https://www.upsti.fr
https://www.upsti.fr

CCINP - PSI - Info Gestion de randonnées Session 2025

du sommet avec le chemin le plus "faible" (lors des étapes successives) avec les variables Fmin et Bmin pour
avancer dans le graphe nous permet d’étre stir que ce chemin est bel et bien le plus court pour passer de Sd a
St.

Ce résultat peut étre retrouvé lors du remplissage du tableau de la question 29. En s’arrétant des qu’un sommet
a été atteint par les recherches backward et forward, on obtient le chemin ’a’->d->e->f de distance totale 6
qui est effectivement le chemin qui réalise la plus petite distance entre a et f.

Question 31

4 : aVisiterB=[Sf]

5 : DejaVisitesB=[]

13 : while BFmin>Fmin +Bmin:

21 : Fmin=min([distanceF[v] [0] for v in aVisiterF if v in distanceF])

22 : Bmin=min([distanceB[v] [0] for v in aVisiterB if v in distanceB])

23 : L=[distanceF [v] [0] 4 distanceB[v] [0] for v in distanceB if v in distanceF]

Question 32

Supposons par ’absurde que s; n’appartient ni & dejaVisitesF ni a dejaVisitesB.

Comme s; n’appartient pas a dejaVisitesF, d(so, s;) est supérieure a la plus grande des distances déja calculées
donc d(sp, s;) >Fmin.

De la méme maniere, comme s; n’appartient pas a dejaVisitesB, d(s;, s,) >Bmin.

Donc d(sg, sn) = d(so, $;) + d(8;, $p) >Fmin+Bmin>BFmin. Or, d(sg, s,) <BFmin.

Donc s; appartient soit a dejaVisitesF soit a dejaVisitesB.

Question 33

Si sp # s, alors sg appartient a dejaVisitesF et s, appartient a dejaVisitesB.

Quelque soit i, s; appartient soit & dejaVisitesF soit a dejaVisitesB (cf Question 32).

Supposons par l'absurde qu’il n’existe pas d’indice s;, tel que s;, soit visité par la recherche forward et s;,41
par la recherche backward. Alors le fait que sy appartienne a dejaVisitesF implique que sy appartienne
a dejaVisitesF qui implique que sg appartienne a dejaVisitesF et ainsi de suite. Donc s; appartient
dejaVisitesF. Cela est en contraction avec le fait que sg appartient a dejaVisitesF et s; appartient
dejaVisitesB.

Question 34

ST

Nous cherchon ici & montrer la correction partielle de I'algorithme de Dijkstra bidirectionnel; cela revient a
justifier que lorsque l'algorithme se termine, le chemin trouvé est le plus court chemin.

Pour cela, il a été supposé par I’abusrde que lorsque l'algorithme se termine, un chemin plus court que celui
trouvé existe. Les résultats des questions 32 et 33 découle de cette hypotheése. Nous cherchons ici a montrer
que la proposition obtenue a l'issue de la question 33 est en contradiction avec le critere d’arrét de ’algorithme
birectionnel détermine a la question 30.

On remarque d’abord que comme I’entend la question 30, I’algorithme s’arréte dés qu’un sommet a été atteint
par les recherchers forward et backward. On précise que "atteint" signifie qu’il est a la fois dans aVisiterF et
aVisiterB, mais ni dans dejaVisiteF ni dans dejaVisiteB.

On note v le sommet nouvellement atteint qui réalise la distance minimale BFmin. En accord avec la question
33, le chemin ainsi obtenu de distance totale BFmin est tel que tous les sommets avant v sont dans dejaVisiteF,
tous les sommets apres v sont dans dejaVisiteB, et v n’est dans aucun des deux.

D’apres le critere d’arrét de 'algorithme bidirectionnel, il ne peut donc pas exister de séquence (s, $1, ..., Sn)
tel qu’il existe s;, avec s;, appartenant a dejaVisiteF et s;,41 appartenant a dejaVisiteB. Cela est en contra-
diction avec le résultat de la question 33.

Donc il n’existe pas de séquence (s, ..., $,,) de distance strictement plus petite que BFmin. Cela est en contra-

Union des Professeurs de Sciences et Techniques Industrielles
© UPSTI - Toute reproduction interdite sans I’autorisation de ’'UPSTI

UPST)

Page 5

https://www.upsti.fr
https://www.upsti.fr

CCINP - PSI - Info Gestion de randonnées Session 2025

diction avec la supposition effectuée. La supposition est donc fausse.
Nous venons donc de montrer par 'absurde que lorsque l'algorithme de Dijkstra bidirectionnel termine, la
distance BFmin est la plus petite distance reliant le sommet de départ au sommet d’arrivée.

Union des Professeurs de Sciences et Techniques Industrielles
© UPSTI - Toute reproduction interdite sans I’autorisation de ’'UPSTI

UPST:

Page 6

https://www.upsti.fr
https://www.upsti.fr

