
Lycée Bellevue - PCSI DST info

DST Informatique
Durée : 2 heures

Consignes
Écrire lisiblement en faisant attention aux parenthèses, aux deux-points, aux virgules, aux guillemets,
à l’indentation, à l’écriture des mots Python avec ou sans majuscule (def, True, ...).

Chercher à optimiser l’écriture des fonctions en réutilisant les fonctions précédentes. Ce critère sera
pris en compte dans la notation.

Une annexe sur les méthodes d’utilisation d’un fichier se trouve à la fin du sujet.

Sujet
Une montre destinée à la pratique du trail enregistre des données en utilisant un système de navigation
par satellite (GPS) qui permet de déterminer l’heure et la position de l’athlète. De plus, cette montre
détermine l’altitude en utilisant les différences de pression atmosphérique.

Par exemple, à la fin d’une course, l’ensemble des données enregistrées par la montre peut être la liste
suivante où chaque caractère '␣' correspond à une espace.

1 ["2023:08:16␣08:31:54␣N42 .91343␣E00 .13707␣1048",

2 "2023:08:16␣08:32:02␣N42 .91399␣E00 .13708␣1050",

3 "2023:08:16␣08:32:09␣N42 .91421␣E00 .13596␣1051",

4 "2023:08:16␣08:32:17␣N42 .91475␣E00 .13561␣1054" ,...]

Un élément de cette liste est appelé une trame. La première trame correspond au moment où l’athlète
active sa montre et la dernière est enregistrée quand la montre est désactivée. Une trame est une châıne
de caractères qui comporte toujours 44 caractères. La première trame de l’exemple précédent, à savoir
"2023:08:16␣08:31:54␣N42.91343␣E00.13707␣1048", est constituée de 5 sous-châınes séparées par
des espaces :

• la sous-châıne de 10 caractères "2023:08:16" correspond à la date ;

• la sous-châıne de 8 caractères "08:31:54" correspond à l’heure ;

• la sous-châıne de 9 caractères "N42.91343" correspond à la latitude ;

• la sous-châıne de 9 caractères "E00.13707" correspond à la longitude ;

• la sous-châıne de 4 caractères "1048" correspond à l’altitude en mètres entiers.

Dans tout l’exercice, on suppose que les données sont collectées à une même date.

I Gestion de l’heure

On souhaite pouvoir vérifier qu’une châıne de caractères est au format des heures dans les trames
(comme la sous-châıne "08:31:54" de la première trame donnée en exemple).

Q1. Écrire une fonction format qui prend en argument une châıne de caractères heure et qui renvoie
un booléen : elle renvoie True si heure comporte 8 caractères et si le caractère ":" est situé aux bons
emplacements et elle renvoie False sinon.
Par exemple :

• format("04:12:55") et format("23:07:56") valent True ;

• format("12:2:55") et format("12;10:25") valent False.

dernière mise à jour le 26 novembre 2025 1/12

Lycée Bellevue - PCSI DST info

Solution

1 def format (heure: str) -> bool :

2 return (len(heure) == 8) and (heure [2] == ' : ') and (heure [5] ==

' : ')

On souhaite maintenant pouvoir vérifier qu’une châıne de caractères au bon format 1 est bien une
heure valide.
Par exemple :

• "04:12:55" et "23:07:56" sont des heures valides ;

• "18:62:55" et "24:00:00" ne sont pas des heures valides.

Q2. Écrire le code de la fonction heure_valide. On rappelle que int("25") renvoie l’entier 25.

Solution

1 def heure_valide (heure: str) -> bool :

2 if not format(heure) :

3 return False

4 else :

5 h = int(heure [0] + heure [1])

6 m = int(heure [3] + heure [4])

7 s = int(heure [6] + heure [7])

8 h_valide = (0 <= h and h <= 23)

9 m_valide = (0 <= m and m <= 59)

10 s_valide = (0 <= s and s <= 59)

11 return h_valide and m_valide and s_valide

Q3. Écrire une fonction extrait_temps_ecoule qui prend en argument une châıne de caractères heure
représentant une heure valide et qui renvoie un entier correspondant au nombre de secondes depuis
minuit. Par exemple, extrait_temps_ecoule("00:02:12") vaut l’entier 132.

Solution

1 def extrait_temps_ecoule (heure: str) -> int :

2 assert(heure_valide(heure))

3 h = int(heure [0] + heure [1])

4 m = int(heure [3] + heure [4])

5 s = int(heure [6] + heure [7])

6 return h*3600 + m*60 + s

Il arrive que certaines trames soient interverties ou dupliquées lors du transfert de données, on veut
pouvoir vérifier que ce n’est pas le cas dans les données reçues.

1. c’est-dire une châıne constituée de deux chiffres, un caractère ":", deux chiffres, un caractère ":" et enfin deux
chiffres

dernière mise à jour le 26 novembre 2025 2/12

Lycée Bellevue - PCSI DST info

Q4. Écrire une fonction verification_ordre qui prend en arguments deux châınes de caractères h1 et
h2 représentant des heures valides et qui renvoie un booléen. Ce booléen vaut True si h2 est strictement
postérieure à h1 et False sinon.

Solution

1 def verification_ordre (h1: str , h2: str) -> bool :

2 t1 = extrait_temps_ecoule(h1)

3 t2 = extrait_temps_ecoule(h2)

4 return t1 < t2

Q5. Écrire une fonction duree qui prend en arguments deux châınes de caractères h1 et h2 représentant
des heures valides et qui renvoie un entier. Cet entier représente la durée, en secondes, entre les instants
h1 et h2. Par exemple, duree("15:48:12","15:50:18") vaut l’entier 126.

Solution

1 def duree(h1: str , h2: str) -> int :

2 t1 = extrait_temps_ecoule(h1)

3 t2 = extrait_temps_ecoule(h2)

4 return t2 - t1

II Validité et extraction des données d’une trame

On souhaite vérifier qu’au cours du transfert d’une trame, aucune des cinq sous-châınes (date, heure,
latitude, longitude et altitude) n’a été oubliée ni dégradée. On dit qu’une trame est valide si elle
comporte bien ces cinq éléments, séparés par des espaces, et que chacun d’eux est lui-même valide.

On suppose disposer dans la suite des fonctions suivantes :

• date_valide qui prend en argument une châıne de caractères date et qui renvoie True si date
est de longueur 10, au bon format, et représente une date valide et renvoie False sinon ;

• lat_valide qui prend en argument une châıne de caractères lat et qui renvoie True si lat est
de longueur 9, au bon format, et représente une latitude valide et renvoie False sinon ;

• long_valide qui prend en argument une châıne de caractères long et qui renvoie True si long
est de longueur 9, au bon format, et représente une longitude valide et renvoie False sinon ;

• alt_valide qui prend en argument une châıne de caractères alt et qui renvoie True si alt est
de longueur 4, au bon format, et représente une altitude valide et renvoie False sinon.

Q6. Écrire une fonction trame_valide qui prend en argument une châıne de caractères trame et qui
renvoie True si trame représente bien une trame valide et False sinon.

Solution

1 def trame_valide (trame: str) -> bool :

2 if (len(trame) != 44) or (trame [10] != " ") or (trame [19] != "

") or\

3 (trame [29] !=" ") or (trame [39] != " ") :

4 return False

dernière mise à jour le 26 novembre 2025 3/12

Lycée Bellevue - PCSI DST info

5 else :

6 date = trame [0:10]

7 heure = trame [11:19]

8 lati = trame [20:29]

9 longi = trame [30:39]

10 alti = trame [40:44]

11 return heure_valide(heure) and date_valide(date) and\

12 long_valide(longi) and lat_valide(lati) and alt_valide(alti)

On suppose disposer dans la suite des fonctions suivantes :

dernière mise à jour le 26 novembre 2025 4/12

Lycée Bellevue - PCSI DST info

• extrait_lat qui prend en argument une châıne de 9 caractères lat qui est une latitude valide
et qui renvoie un flottant représentant la latitude ;

• extrait_long qui prend en argument une châıne de 9 caractères long qui est une longitude
valide, et qui renvoie un flottant représentant la longitude ;

• extrait_alt qui prend en argument une châıne de 4 caractères alt qui est une altitude valide,
et qui renvoie un entier représentant l’altitude.

Q7. Écrire une fonction extrait_trame qui prend en argument une châıne de caractères trame re-
présentant une trame valide. et qui renvoie les informations de cette trame sous la forme d’un tuple
(t, lati, longi, alt) où :

• t est de type int et représente le temps écoulé depuis minuit en secondes ;

• lati est de type float et représente la latitude ;

• longi est de type float et représente la longitude ;

• alt est de type int et représente l’altitude en mètres.

Solution

1 def extrait_trame(trame: str) -> tuple :

2 h = extrait_temps_ecoule(trame [11:19])

3 lati = extrait_lat(trame [20:29])

4 longi = extrait_long(trame [30:39])

5 alti = extrait_alt(trame [40:44])

6 return (h, lati , longi , alti)

III Analyse des performances de l’athlète

Dans toute la suite, le parcours réalisé par l’athlète est représenté par une liste dont chaque élément est
un tuple de la forme (h, lat, long, alt) qui, comme expliqué à la question précédente, représente
une trame. On appellera parcours de telles listes. Par exemple, le parcours correspondant à la liste de
trames donnée en exemple en début de sujet (page 1) est la liste suivante.

[(30714 , 42.91343 , 0.13707 , 1048),

(30722 , 42.91399 , 0.13708 , 1050),

(30729 , 42.91421 , 0.13596 , 1051),

(30737 , 42.91475 , 0.13561 , 1054),

...]

Q8. Écrire une fonction alt_max qui prend en argument un parcours non vide p (représenté par une
liste comme décrit ci-avant) et qui renvoie l’altitude maximale, en mètres, atteinte par l’athlète durant
le parcours p. On n’utilisera pas la fonction Python max et on supposera qu’il y a au moins une altitude
positive dans le parcours.

Solution

1 def alt_max(p: Parcours) -> int :

2 res = 0

3 for point in p :

4 (_, _, _, alti) = point

dernière mise à jour le 26 novembre 2025 5/12

Lycée Bellevue - PCSI DST info

5 if alti > res :

6 res = alti

7 return res

Le dénivelé positif réalisé lors d’un parcours est le total des montées réalisées lors de ce parcours. Par
exemple, si les altitudes successives d’un parcours sont 1048, 1051, 1054, 1049 et 1053, le dénivelé
positif de ce parcours vaut 10 mètres.

Q9. Écrire une fonction denivele_positif qui prend en argument un parcours p et qui renvoie, sous
la forme d’un entier, le total des montées, en mètres, du parcours p.

Solution

1 def denivele_positif(p: Parcours) -> int :

2 tot_montee = 0

3 for i in range(len(p) -1) :

4 if p[i+1][3] > p[i][3] :

5 tot_montee += p[i+1][3] -p[i][3]

6 return tot_montee

Dans la suite, on dispose d’une fonction distance(lati1, longi1, lati2, longi2) qui renvoie la
distance sur le globe terrestre, en mètres, entre des points de coordonnées géographiques respectives
(lat1,long1) et (lat2,long2).

Q10. Écrire la fonction vitesse_moyenne qui prend en argument un parcours p et qui renvoie la vitesse
moyenne en mètres par seconde de l’athlète durant le parcours p. On suppose que le parcours p contient
au moins deux éléments correspondant à des instants distincts.

Solution

1 def vitesse_moyenne(p: Parcours) -> float :

2 dist = 0

3 for i in range(len(p) -1) :

4 (_, lati1 , longi1 , _) = p[i]

5 (_, lati2 , longi2 , _) = p[i+1]

6 dist += distance(lati1 , longi1 , lati2 , longi2)

7 duree = p[len(p) -1][0] - p[0][0]

8 assert(duree > 0) #optionnel

9 return dist/duree

On considère que l’athlète est en pause entre 2 instants t1 et t2 consécutifs si la distance entre ses
positions aux instants t1 et t2 est inférieure ou égale à 3 mètres.

Q11. Écrire la fonction en_pause qui prend en argument quatre flottants lati1, longi1, lati2 et
longi2 et qui renvoie True si l’athlète est en pause entre les points de coordonnées géographiques
(lati1,longi1) et (lati2,longi2) et False sinon.

dernière mise à jour le 26 novembre 2025 6/12

Lycée Bellevue - PCSI DST info

Solution

1 def en_pause(lati1: float , longi1: float , lati2: float , longi2:

float) -> bool :

2 return distance(lati1 , longi1 , lati2 , longi2) <= 3

Q12. Écrire une fonction temps_pause qui prend en argument un parcours p et qui renvoie, sous la
forme d’un nombre entier de secondes, la durée totale des pauses de l’athlète durant le parcours p.

Solution

1 def temps_pause(p: Parcours) -> int :

2 tps_p = 0

3 for i in range(0,len(p) -1) :

4 (t1, lt1 , lg1 , _) = p[i]

5 (t2, lt2 , lg2 , _) = p[i+1]

6 if en_pause(lt1 , lg1 , lt2 , lg2) :

7 tps_p += (t2 - t1)

8 return tps_p

Q13. Écrire la fonction nombre_pauses qui prend en argument un parcours p qui renvoie le nombre de
pauses effectuées durant le parcours p.

Solution

1 def nombre_pauses(p: Parcours) -> int :

2 nb_p = 0

3 deja_en_pause = False

4 for i in range(0,len(p) -1) :

5 (t1, lt1 , lg1 , _) = p[i]

6 (t2, lt2 , lg2 , _) = p[i+1]

7 if en_pause(lt1 , lg1 , lt2 , lg2) :

8 if not deja_en_pause :

9 nb_p = nb_p + 1 #on compte la pause quand elle commence

10 deja_en_pause = True

11 else :

12 deja_en_pause = False

13 return nb_p

IV Gestion des performances des participants au trail

Le but de cette partie est de gérer ou d’utiliser les données des athlètes participant à une course
organisée sur un circuit.

Pour participer à un trail, les athlètes doivent s’inscrire via un site internet et renseigner leur nom,
leur prénom, leur sexe et leur année de naissance.

dernière mise à jour le 26 novembre 2025 7/12

Lycée Bellevue - PCSI DST info

Au franchissement de la ligne d’arrivée, le temps réalisé par le coureur est relevé et les données de
chaque finisher sont collectées dans un fichier texte.

Chaque ligne du fichier correspond à un coureur et les données sont dans l’ordre, le numéro de dossard,
le nom, le prénom, le sexe, l’année de naissance, le temps.
On donne ici un extrait du fichier trail.txt.

1,Germain,Lucille,F,1998,01:38:25

2,Robert,Luc,M,1994,01:39:12

3,Durand,Albert,M,1990,00:58:16

4,Gelin,Lina,F,1991,01:24:52

Pour pouvoir manipuler les données du fichier trail.txt, celles-ci seront enregistrées dans une liste
dont les éléments sont des listes de châınes de caractères.

liste_trail = [["1", "Germain", "Lucille", "F", "1998", "01:38:25"],

["2", "Robert", "Luc", "M", "1994", "01:39:12"],

["3", "Durand", "Albert", "M", "1990", "00:58:16"],

["4", "Gelin", "Lina", "F", "1991", "01:24:52"]]

Q14. Écrire la fonction extraire_liste qui a pour paramètre un nom de fichier fichier de type str
correspondant au nom de fichier et qui renvoie une telle liste.

Solution

1 def extraire_liste(fichier):

2 f = open(fichier)

3 liste = f.readlines ()

4 f.close()

5 for k in range(len(liste)):

6 liste[k] = liste[k].strip().split(",")

7 return liste

L’instruction
liste_trail_ordonnee = sorted(liste_trail, key = lambda a:a[5])

permet d’ordonner cette liste du coureur le plus rapide au coureur le plus lent.
liste_trail_ordonnee a pour contenu :

[["3", "Durand", "Albert", "M", "1990", "00:58:16"],

["4", "Gelin", "Lina", "F", "1991", "01:24:52"],

["1", "Germain", "Lucille", "F", "1998", "01:38:25"],

["2", "Robert", "Luc", "M", "1994", "01:39:12"]]

Dans la suite de l’énoncé, le paramètre lto représentera la liste des finishers d’un trail ordonnée dans
l’ordre d’arrivée des coureurs et aura la même structure que liste_trail_ordonnee.

Q15. Écrire une fonction liste_par_sexe qui a pour paramètres la liste ordonnée des finishers lto et
une châıne de caractères sexe, et qui renvoie la liste ordonnée des finishers de sexe sexe.

Solution

1 def liste_par_sexe(lto , sexe):

2 lst_sexe = []

3 for coureur in lto:

dernière mise à jour le 26 novembre 2025 8/12

Lycée Bellevue - PCSI DST info

4 if coureur [3] == sexe:

5 lst_sexe.append(coureur)

6 return lst_sexe

dernière mise à jour le 26 novembre 2025 9/12

Lycée Bellevue - PCSI DST info

Q16. Écrire une fonction classement_par_sexe qui a pour paramètres la liste ordonnée des finishers
lto et une châıne de caractères sexe et qui crée un fichier texte dont le nom est classementM.txt ou
classementF.txt (suivant la valeur de sexe) donnant le classement des finishers homme ou femme.
Cette fonction ne renvoie rien.
Par exemple, classementM.txt aura pour contenu :

3,Durand,Albert,M,1990,00:58:16

2,Robert,Luc,M,1994,01:39:12

Solution

1 def classement_par_sexe(lto , sexe):

2 lst_sexe = liste_par_sexe(lto , sexe)

3 f = open("classement"+sexe+".txt", "w")

4 for coureur in lst_sexe:

5 ligne = ""

6 for k in range(len(coureur) -1):

7 ligne += coureur[k]+","

8 ligne += coureur [-1] +"\n"

9 f.write(ligne)

10 f.close()

Q17. Écrire une fonction donnee_coureur_num qui a pour paramètres une liste ordonnée de finishers
lto et une châıne de caractères num représentant le numéro de dossard. Cette fonction renvoie le tuple
(c, p) où c la liste de châıne de caractères représentant le finisher de dossard num et p est un entier
correspondant à la place du coureur c dans la liste lto.
Par exemple, donnee_coureur_num(liste_par_sexe(liste_trail, "M"), "2") renvoie
(["2", "Robert", "Luc", "M", "1994", "01:39:12"], 2)

Solution

1 def donnee_coureur_num(lto , num):

2 k = 1

3 for coureur in lto:

4 if coureur [0] == num:

5 return coureur , k

6 k += 1

Q18. Écrire une fonction resume_num qui a pour paramètres la liste ordonnée des finishers lto et une
châıne de caractères num représentant le numéro de dossard. Cette fonction crée un fichier texte dont
le nom a pour format nom_prenom.txt et qui enregistre des données correspondant au finisher de
numéro de dossard num avec le classement général et le classement par sexe et d’autres informations
comme dans l’exemple suivant.
Le fichier Gelin_Lina.txt sera exactement :

Gelin Lina

Place,Temps,Pl/Sexe

2,01:24:52,1

dernière mise à jour le 26 novembre 2025 10/12

Lycée Bellevue - PCSI DST info

Solution

1 def resume_num(lto , num):

2 coureur , plg = donnee_coureur_num(lto , num)

3 liste_s = liste_par_sexe(lto , coureur [3])

4 coureur , pls = donnee_coureur_num(liste_s , num)

5 nom = coureur [1]

6 prenom = coureur [2]

7 f = open(nom+"_"+prenom+".txt", "w")

8 f.write(nom + " "+prenom+"\n")

9 f.write("Place ,Temps ,Pl/Sexe\n")

10 f.write(str(plg)+","+coureur [5]+","+str(pls))

11 f.close()

dernière mise à jour le 26 novembre 2025 11/12

Lycée Bellevue - PCSI DST info

Annexe : Méthodes principales d’utilisation d’un fichier

La méthode split s’applique à une châıne de caractères S : S.split(c). Elle la sépare en une liste
de châınes de caractères. Par défaut, le délimiteur c est l’espace.

La méthode strip s’applique à une châıne de caractères S : S.strip(). Elle renvoie la châıne de
caractères S dans laquelle les caractères d’espacement sont retirés en début et en fin de châıne.

Écriture dans un fichier :

montxt=open(' fichier.txt ' , ' w ')
...

montxt.write(' texte ... ')
...

montxt.close()

Lecture d’un fichier :

montxt=open(' fichier.txt ' , ' r ')
...

S=montxt.read() # ou

L=montxt.readlines ()

...

montxt.close()

Toutes les méthodes suivantes s’appliquent à un objet de type fichier comme montxt :
L=montxt.readline(), montxt.write("Hello")...

read() lit le fichier en entier renvoie une châıne de caractères

read(n) lit n caractères renvoie une châıne de longueur au plus n,
vide si tout le fichier a été lu.

readline() lit une ligne renvoie une châıne de caractère,
vide si le fichier est fini

readlines() lit toutes les lignes renvoie la liste de toutes les lignes
sous forme de châınes de caractères.

write(S) écrit la châıne S

writelines(L) écrit les lignes de la liste L

close() enregistre le fichier

dernière mise à jour le 26 novembre 2025 12/12

	Gestion de l'heure
	Validité et extraction des données d'une trame
	Analyse des performances de l'athlète
	Gestion des performances des participants au trail

