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Corrigé du TD 18 : |Séries entieres

Exercice (x) 1 (Rayon de convergence)
Déterminer le rayon de convergence de la série enticre E anx", ou :
n>0

nn+4 i) (an) est . . 2026. i) 2"
. 1) (an) est une suite convergeant vers . 1) ap = .
2n+7 " 7 " (2n)!

i) ap = (—=1)"In(n)(7)

Solution : Les trois séries entiéres étant non lacunaires, on peut envisager I’emploi de la regle de d’Alembert;

1
en notant R le rayon de convergence, il vient : i) | R = = |. ii) [R = 1] iii) [R=0]m
m

Exercice (x) 2 (Technique d’Abel)
Soit Z a,z" une série entiére de rayon de convergence R > 0.
n>0
a
Prouver que celui de Z 2" est infini.
n>0 n!

Solution : Par hypothese si 0 < ro < R, la suite (a,(ro)") est bornée. Fixons un tel r.

(r/ro)"

Qp
g

n!

Pour tout n et tout r > 0 : a—?r” = (an(ro)™)( ). Ce qui montre que la suite ( ) est bornée en
n!

. : ) e ~a
tant que produit de deux suites bornées et donne un rayon de convergence infini pour Z —Tz"l
n>0

Exercice (x) 3 (Penser aux complexes)

2n
a) Rayon de convergence et somme de Zcos(%)xn.

cos(22%

b) Méme question avec Z ] )m"H.
n

Solution : a) Corrigé en classe. b) Corrigé partiellement (calcul final non achevé mais drivé). Pour la

x).

T+ 2

1
somme et pour x €] — 1,1[, on trouve : 1 In(z® + = + 1) + arctan(

Exercice (x) 4 (Reconnaitre une somme)

oo 2n

2
cos®(nx)x
On pose, pour x d préciser, f(x) = Z #
n=0
Ecrire f a Uaide de fonctions usuelles.

n!

Solution : On notera d’abord que f n’est pas la somme d’une série entiere puis que, pour tout réel z et
2n 2n
x

2

cos®(nx)z . - .

tout n : |7'] < —- Donc par comparaison avec une série esponentielle, nous obtenons que f est
n! n!

bien définie sur RO L1

Enfin, par simple trigo : cos®(t) = B + 1(6% + e72%1), ce pour tout réel t. Ainsi (les trois sommes existent

par le méme argument que précédemment) et pour tout réel = (en utilisant le DSE de I'exponentielle) :

1 20 p2n 1 &> (xeim>2n ) (xefix)Qn 612+COS(xQSin(QJJ))e‘TQCOS(Qx)
f(x)_ﬁ(;ﬁ)+i(7;T+T§ )= 2

Exercice (x) 5 (DSE)
Déterminer le DSE de x — In(x* — 5z + 6).




Solution : On note f la fonction & développer en série entiére en observant déja qu’elle est de classe C'™
au voisinage de 0 et méme sur son domaine de défintion a savoir R\ [2,3] = D.

Pourz € D, f(z) = In((2—z)(3—x) et pour z €]—-2,2] f(z) = In(2—x)+In(3—2x) = ln(6)—|—ln(1—§)+ln(1—£)

2 3
puis, grace au DSE de v — In(1 — w) sur ]-1,1[, il vient | f(z) = In(6) — 2(2_” + 3_”):6— )
n
n=1

On pouvait aussi dériver f, décomposer en simple f en donner un DSE (cf exemple cours) et, enfin primi-
tiver terme & terme le DSE de f....(plus long) M

Exercice (xx*) 1 (Vieil X)
Domaine de définition et somme de Z H,z".
n>1

Solution : Pour tout n > 1, 1 < H, < n donc, par encadrement, le rayon de cette série entiere vaut D
Pour la somme de cette méme série entiere que nous noterons S, on remarque que Z H,x™ est le produit
n>1
n
de Cauchy des séries entiéres Z " et Z T (toutes deux de rayon de convergence 1) donc (en vertu des
n>0 n>1

In(1—x)

11—z

DSE usuels) : |Vz €] — 1,1], S(z) = L]

Exercice (x) 6 (Fonction C* non DSE)

On doit a Cauchy (1823) le premier exemple de fonction C*° sur R n’étant pas DSE.
—1/2% .

On pose [ :x — € ,S“C#O
0 sinon

a) Vérifier que f est de classe C™ sur R* et continue sur R.

P,
b) Etablir par récurrence que ¥n € N, il eziste P, € R[X] tel que Vz # 0, f(z) = x:g:)f(:n)

¢) En déduire que f est de classe C™° sur R et que toutes les dérivées successives de f en 0 sont nulles.
d) Etablir que la série de Taylor de f converge sur R mais que f n’est pas DSE ( procéder par l’absurde).

Solution :a) et b) ne posent aucune difficulté. ¢) On utilise le théoréme du prolongment des dérivées a tout

Pa(x) f(z)

3 flz) = O<T) six — 0.

ordre (cf cours premiére année). Fixons n > 1 et soit 2 # 0 donc f™(z) = 5

T t3n/2

x3n et

sance comparée, que f (z) =e 0. Ainsi le théoréeme pré-mentionné nous assure que (avec les hypotheses
z—

1 : : .
, en posant t = —; donc en faisant tendre x vers 0 (i.e t — 400), nous obtenons, par crois-
T

vérifiées en a)) f est bien de classe C™° sur R et que toutes les dérivées successives de f en 0 sont nulles
(limites obtenues auparavant).

d) La série de Taylor de f est donc la série nulle qui converge bien sur R et si f était DSE, elle serait somme
de cette série de Taylor au voisinage de 0. Autrement dit f serait nulle sur un tel voisinage. Ce qui est
absurde puisque f > 0 sur R7. ’f n’est pas DSE ‘l

Exercice (xx) 1 (Fonction DSE)
1

a) Domaine de définition de f : x — / e =tn(®) gy 2
0

b) Prouver que f est DSE.

Solution : a) Posons, pour ¢ €]0,1], g(t) = t1n(t) et g(0) = 0; cette fonction est continue sur le segment
[0, 1], il en résulte (intégrande continue sur |0, 1] et fausse singularité en 0) que f est définie sur R.
b) Fixons un réel z et posons h(t) = e~ **™®) pour ¢ €]0, 1], nous disposons alors dans ce contexte (DSE

o0
exponentielle) de 1'égalité f(t) = Z un(t), ou on a posé (pour tout entier naturel n et tout ¢ € [0,1])
n=0
xg(t))"™
un(t) = (-1 IO
Nous allons employer le théoréme d’intégration terme & terme sur un segment. En effet, pour tout n les uy,
(cf a)) sont continues sur le segment [0, 1]. De plus en notant M un majorant de |g| (Weierstrass), il vient




(M)

lun ()] < , ce pour tout (n,t) € N x [0,1]. Ce qui prouve (série majorante étant exponentielle) la

n!
convergence normale sur [0, 1] de la série de fonctions Z U,
n>0
1 © 1

L’intégration terme & terme étant légitimée, nous avons / h(t)dt = Z( / un(t)dt). Soit en explicitant et

0 =0 /0
apres calcul par IPP répétées :

oo n
x
T) = —— | et ce pour tout réel x donc ce DSE est validé sur RH

f(x) T;(er)n“ p

Exercice (xx) 2 (Un probléme d’Euler)
Pour n entier naturel, on désigne par u, le nombre de facons de payer n euros avec uniquement des piéces
de 2 euros et 3 euros (dont la mise en circulation est imminente).
1) Déterminer u,, pour n < 6.
2) Constater que u, est aussi le nombre de couples (x,y) € N2 tels que 2x + 3y =n.
3) Démontrer que pour |z| <1 :
o
= x2)1(1 ey = gunx".(Pmduit de Cauchy!!!)
On admet que pour de tels x on a aussi :

1 1 1 1 ,\/§<1 1)

A-a)(1-2%) 4(+z) 4(1-2) 6(1-2? ' 9

j—m_j—m

a

1 1 2 2 2
4) En déduire que : uy, = nt + 1(1 + (-1)") + ;/gsin ( n;—

5 77), ce pour tout n.

“Noter en outre que le probléme d’origine porte sur des piéces de 2 et 5 écus. Ce qui donne lieu & des calculs plus pénibles.
Par exemple w1001 = 167

Exercice (x*x) 2 (Produit de Cauchy)

On se donne une suite telle (ay) telle que ag = 1 et, pourn >1 :
1 n—1 a
Gry— .
nn(kz:% i = k)
a) Etablir que la suite (a,) est a termes dans [0,1].
b) Montrer que le rayon de convergence de la série entiére Z a,x" est strictement positif.
n>0

On note f la somme de la série entiere précédente.
¢) Prouver qu’il existe une fonction g DSE telle que f(x) = e9®) qu voisinage de 0.

Exercice (xx) 3 (Equation différentielle)
Soit (E) : z%y" + zy' + (4z* — 1)y = 0.
Déterminer les solutions de (E) DSE.

i2
sin®(z
Solution : En appliquant la méthode indiquée en cours. On trouve que ce sont les z € R — )\A, ou
x
A € R, ces fonctions valant toute 0 en OM

Exercice (x*x) 3 (X)
oo
a
On se donne (ay) une suite a termes dans {—1,1} et on pose f(z) = Z —Tmn
n!
n=0
On suppose que sur Ry toutes les dérivés successives de f sont bornées par 1.

Déterminer f.

, ce pour T 4 préciser.

Solution : La série exponentielle nous assure que f est définie et DSE sur R.
Nous nous proposons de montrer que f = +g,oug:z € R — e ”.
C’est évidemment le cas si la suite (a,,) est égale & +((—1)"). Supposons que ce ne soit pas le cas; ceci signifie

qu'’il existe un entier naturel p tel que (sans perte de généralité en passant a l'opposé) a, = ap+1 = 1. En




posant ¢ = f®), nous avons donc g(0) =1 et ¢’(0) = 1 (cf expression des coefficients d'une S.E en fonction
des dérivés successives en 0 de sa somme). Ceci montre que g est strictement croissante au voisinage de 07;
on contredit le fait que g < 1 sur un tel voisinagell

Exercice (x) 7 (Calcul de somme)
Existence et valeur de Z M

|
7—0 n:

Solution : Méthode donnée en cours. Résultat |27¢ [l

PROBLEME : Autour du théoréme d’ABEL sur les séries entiéres

Dans tout le probléme :

(an)nen est une suite de nombres réels telle que la série entiere Z a,z" de la variable réelle x ait pour rayon
de convergence 1.

On désigne alors par Z an la série de terme général a, et par f la fonction définie sur l'intervalle | — 1,1]

S

On désigne par (771) et (P2) les deux propriétés suivantes possibles de la suite (ay) :
(P1) : la série Z a, converge.

(P2) : la fonction f admet une limite finie, notée lim f(z), lorsque x tend vers 1 par valeurs inférieures.
r—1-

I. GENERALITES

1. En utilisant des développements en série entiere "usuels", donner dans chaque cas, un exemple de suite
(an) telle que :

a. (ap) vérifie (P1) et (P2) ;
b. (a,) ne vérifie pas (P1) et vérifie (P2) ;
c. (ap) ne vérifie ni (Py) ni (Pa) ;

d. La série Z anz™ ne converge pas uniformément sur Uintervalle | — 1, 1[ (justifier).

2. On suppose que la série Zan est absolument convergente ; montrer alors que la fonction f admet

une limite finie lorsque x tend vers 1 par valeurs inférieures et que hm flx Z Q-
T—r

3. Ezxzemple

1 n
Déduire de la question précédente la somme de la série Z Q
n>2 n(n —1)

(on pourra utiliser une décomposition en éléments simples).
II THEOREME D’ABEL

4. On suppose dans cette question que la série Zan converge. On va montrer qu’alors la fonction f
admet une limite finie lorsque x tend vers 1 par valeurs inférieures (théoreme d’Abel).

+oo
On pose 1, = Z a, et pour tout x € [0, 1], Z akx .
k=n+1 k=n+1
+o0
a. Simplifier, pour tout x € [0, 1], Z(T”ﬂ?—l — Tpyp)z" TP
p=1

b. En déduire que, pour tout z € [0,1[, Ry,(z) = rpz™t + 2" (2 Z Tntpx? -1




c. Soit un réel € > 0, justifier qu’il existe un entier ng tel que pour tout entier n > ng et tout
€
entier naturel p on ait |ry,4p| < 3 puis que, pour tout entier n > ng et pour tout réel x € [0, 1],
|R,(2)| < e.
d. Conclure que la fonction f admet une limite lorsque = tend vers 1 par valeurs inférieures et que

+o0
lim f(z) = Z ap,.
n=0

r—1—

5. Que peut-on dire de la série Z an si lim f(z) = +o0 ?

z—1-
6. Ezemple
Retrouver le développement en série entiere en 0 de la fonction x —— arctan(z), puis utiliser le
T

théoreme d’Abel pour écrire 1 comme somme d’une série numérique.

7. Application
On rappelle que le produit de Cauchy de deux séries absolument convergentes est une série absolument
convergente.

a. Le produit de Cauchy de deux séries convergentes est-il une série convergente 7
="

nl/4

(On pourra examiner le cas u, = v, = pour n > 1).

n
b. Soit E Uy, €t E v, deux séries de nombres réels ; on pose, pour n entier naturel, w, = E UV —k

k=0
et on suppose que les trois séries Z Up,, Z Uy, €t an convergent.
“+00 “+o00 “+o00
Montrer, a ’aide du théoreme d’Abel, qu’alors Z Wy, = Z Unp Z Up.
n=0 n=0 n=0

III RECIPROQUE DU THEOREME D’ABEL

8. Justifier que la réciproque du théoréme d’Abel est fausse.

On cherche a rajouter une condition (Q) a la condition (P2) de telle sorte que si (ay) vérifie (P2)
et (Q), alors elle vérifie (Py).

9. On prend pour (Q) la propriété : pour tout entier n, a, > 0.
Montrer que si (a,) vérifie les propriétés (P2) et (Q), alors elle vérifie la propriété (P;)
n

(on pourra montrer que Z arp < lim f(x)).
k=0 T—1—

1
Si on prend pour (Q) la propriété : la suite (a,) vérifie a, = O () (la suite (ay,) est dominée par la suite
n

1
( au voisinage de +00), on obtient le théoréme de Littlewood dont on admettra la démonstration
n

pour 'appliquer dans la partie suivante.

IV SERIES HARMONIQUES TRANSFORMEES
Désormais, on admet et on pourra utiliser le théoreme de Littlewood :

1
si la fonction f admet une limite finie lorsque = tend vers 1 par valeurs inférieures et que a,, = O (), alors
n

la série E an converge.

Pour p entier naturel non nul, on considére une suite (e,),>1 périodique de période p formée d’éléments de
I'ensemble {—1,1}.

10. Donner, en justifiant leur valeur, les rayons de convergence des séries entieres :

Zanaf”*l et Z %x"

n=1 n=1

+oo e +o0
On pose, pour z €] — 1,1[ : f(x) = E —z" et g(z) = E enz™ L
n
n=1 n=1



11. Etablir que la série Z — converge si et seulement si la fonction f: x —— / t)t admet une limite
n=1
finie lorsque x tend vers 1 par valeurs inférieures.

12. Montrer que g est une fraction rationnelle a déterminer.

1
13. Retrouver, uniquement par les deux questions précédentes, que la série harmonique Z — diverge et

n=1
. . (=" L
que la série alternée E converge en précisant sa somme.
n=>1 n
P
14. Déterminer une condition nécessaire et suffisante portant sur la somme E €; pour que la série E —
i=1 nx1

converge. Que peut-on en conclure dans les cas ou la période p est un entier impair ?

15. Ezemple
Dans le cas ou la suite (g,,)n>1 est périodique de période 6 avec :
+oo
e1=1l,eg9=1le3=1,e4 = —1l,e5 = —1,e6 = —1, determlnerz
n=1 TL
(il est demandé de détailler les calculs).
Solution : IT THEOREME D’ABEL
+oo
4.a. Comme 7pip_1 — Tpip = Anip , ON a tout simplement: Z(rnﬂ),l — Tnip) TP = Ry (2) .
p=1

4.b. 1l est bien connu (mais ¢a n'est pas au progmmme) que dans ces histoires, il faut travailler sur les

k
sommes partielles: Z(T"ﬂ’—l — Todp) T ntp — Zr”ﬂ?—l z" ZT"JFP p; apres mise a l'écart du
p=1 p=1
k
premier terme de la premieére somme et réindexation des autres, on obtient: Z(r”ﬂ’—l — Tnip) P =
p=1
k—1
2T 2" (- 1) Z Totp P4 — 1,0y, 2R le dernier terme tend vers 0 lorsque k tend vers linfini car
p=1

n+k

rntr tend vers O puisque la série Zan converge, et x est borné; il suffit donc de faire tendre k vers

I'infini pour obtenir la relation voulue!.

4.c. Comme on 'a déja signalé, r, tend vers 0; par conséquent, si I'on se donne > 0, on dispose d’un

entier ng pour tout kng on ait |rg|/2; alors on a bien |r,4p|/2 pour nng et p entier naturel. Et pour
+o0
iant (1 — p—1 _
x € [0,1] et nno on obtient: |Rn(:1:)|2 + 2(1 :U)I;x =

4.d. Continuité de la somme a gauche en 1, assurée par convergence uniforme de la série sur [0, 1].

5. Par contraposition, la série est divergente.

+oo 2n+1
T
6. Par primitivation du développement de ——— on obtient arctan(x) = -1)" our x €
D Vi velopp 52 (z) nEO( )2n+1p
2 ™ "
] —1,1[; et l'on peut® appliquer le théoréme d’Abel pour obtenir: 1= 2:0 1

7.a La série proposée converge par critére spécial des séries alternées. Le terme général du produit de
n—1

- (=1)"

Cauchy est ici: w, = Z _

1/4

= (k(n— k)Y

1 . .
Qui est valable aussien 1 ...
2 , . . . . ;. , 7. s o
Ce résultat s’obtient aussi par majoration du reste d’une série alternée vérifiant le critére spécial . ..

= (—=1)"a, . (poser ug=1vy=0)




n? V2(n —1)

Or k(n-— kz)z (étude des variations, ou mieux: (n—2k)20) et par conséquent a, ; ce qui

N

montre que la série de terme général w, diverge grossierement.

7.b  Puisque E Up €t E v, convergent, les séries entieres E u, x" et g vp 2™ ont un rayon de con-

vergence au moins égal a 1. D’apres le cours, c’est alors aussi le cas de an x"... Sil'on note U(x),
V(x), W(x), les sommes respectives, on a: U(x)V(x) = W(x) pour tout = € [0,1] . Mais d’apres le
théoreme d’Abel® appliqué & chacune des trois séries, lorsque z tend vers 1 par valeurs inférieures, U (z)
tend vers Z Up , V() tend vers Z Un, W(z) tend vers Z wy, . Par unicité de la limite, le produit des
deux premieres sommes est égale a la troisieme

IIT RECIPROQUE DU THEOREME D’ABEL

8. C’est la question 1.b) !

n
9. Puisque les coefficients sont positifs, Z ay, a:kf(x) pour tout z € [0,1[;
k=0
en outre, la fonction f est croissante sur [0,1[, d’ou f(z) lim f(z) pour tout = € [0, 1].
rz—1~

On a donc: Z ay, F hm f(z) pour tout z € [0,1[. En faisant tendre = vers 1 dans cette derniere inégalité,
k=0

on obtient une majoration de la suite des sommes partielles de la série a termes positifs Z a, qui converge

donc.

IV SERIES HARMONIQUES TRANSFORMEES

10. D’apres le lemme d’Abel du programme officiel, s’il existe r > 0 tel que la suite de terme général
lan,| ™ soit bornée, alors le rayon de convergence de Z an 2™ est supérieur ou égal a r.

Avec =1 on voit ainsi que les deux séries considérées ont un rayon de convergence supérieur ou égal a 1.
Au point 1, la premiére diverge grossierement et la deuxieme ne converge pas absolument; par conséquent
1 est le rayon de convergence de 'une et de 'autre.

T

11. Effectivement®, on peut écrire f(z) = / g(t)t pour x €] —1,1] ... et appliquer le théoréme de
0

Littlewood précédemment admis pour la réciproque du théoréme d’Abel.

1_|_2x_|_...pxp—1

12. Ona: zPg ntp-l — € t =
Z T Z ke px Z "1 par conséquent, g(z) T
k=p+1 k=p+1
T —
13. 17 t diverge quand z tend vers 1; tandis que / ﬁt tend vers In2 ...
o 1- o 1-—-

14. On est bien mis sur la voie par la question précédente: 1 étant racine simple du dénominateur de g(x),
il faut et il suffit que 1 soit racine du numérateur pour que l'intégrale soit convergente. (dans ce cas, g est
p
prolongeable par continuité en 1) Une CNS est donc: Zl =0.
i=1
Cela ne peut pas se produire lorsque p est impair!

l+z+a?—a—at -2 (I+z+2?)(1-2%) 14z z?

15. O ici: = = = ;
nadc: g(x) 1— b (1—a3)(1+4a3) 1+x3+1+x3’
L og2x 1 X
on en déduit que / + / ——— . Lapremiere intégrale (abélienne) vaut: / —_—
E Z x+1 o 1+a3 P & ( ) 0 (x—1)2+
3
Pour la seconde, on a une primitive évidente ... Le résultat final est donc: —= + —

3\f In2°

3p- . P . o egs . s N

Bien entendu, cela devient trivial si les deux rayons initiaux sont strictement supérieurs a 1 ...
4 . N . 4 A .

Cela aurait du étre une question préalable, méme si c’est du cours ...



