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Corrigé du TD 18 : Séries entières

Exercice (⋆) 1 (Rayon de convergence)
Déterminer le rayon de convergence de la série entière

∑
n≥0

anxn, où :

i) an = (−1)n ln(n)(π)n n + 4
2n + 7 . ii) (an) est une suite convergeant vers 2026. iii) an = 2n2

(2n)! .

Solution : Les trois séries entières étant non lacunaires, on peut envisager l’emploi de la règle de d’Alembert;

en notant R le rayon de convergence, il vient : i) R = 1
π

. ii) R = 1 . iii) R = 0 ■

Exercice (⋆) 2 (Technique d’Abel)
Soit

∑
n≥0

anzn une série entière de rayon de convergence R > 0.

Prouver que celui de
∑
n≥0

an

n! zn est infini.

Solution : Par hypothèse si 0 < r0 < R, la suite (an(r0)n) est bornée. Fixons un tel r0.

Pour tout n et tout r > 0 : an

n! rn = (an(r0)n)((r/r0)n

n! ). Ce qui montre que la suite (an

n! rn) est bornée en

tant que produit de deux suites bornées et donne un rayon de convergence infini pour
∑
n≥0

an

n! zn■

Exercice (⋆) 3 (Penser aux complexes)
a) Rayon de convergence et somme de

∑
cos(2nπ

3 )xn.

b) Même question avec
∑ cos(2nπ

3 )
n + 1 xn+1.

Solution : a) Corrigé en classe. b) Corrigé partiellement (calcul final non achevé mais drivé). Pour la

somme et pour x ∈] − 1, 1[, on trouve : 1
4 ln(x2 + x + 1) + arctan(

√
3x

x + 2) ■

Exercice (⋆) 4 (Reconnaître une somme)

On pose, pour x à préciser, f(x) =
∞∑

n=0

cos2(nx)x2n

n! .

Ecrire f à l’aide de fonctions usuelles.

Solution : On notera d’abord que f n’est pas la somme d’une série entière puis que, pour tout réel x et

tout n : |cos2(nx)x2n

n! | ≤ x2n

n! . Donc par comparaison avec une série esponentielle, nous obtenons que f est
bien définie sur R□
Enfin, par simple trigo : cos2(t) = 1

2 + 1
4(e2it + e−2it), ce pour tout réel t. Ainsi (les trois sommes existent

par le même argument que précédemment) et pour tout réel x (en utilisant le DSE de l’exponentielle) :

f(x) = 1
2(

∞∑
n=0

x2n

n! ) + 1
4(

∞∑
n=0

(xeix)2n

n! +
∞∑

n=0

(xe−ix)2n

n! ) = ex2 + cos(x2 sin(2x))ex2 cos(2x)

2 ■

Exercice (⋆) 5 (DSE)
Déterminer le DSE de x → ln(x2 − 5x + 6).



Solution : On note f la fonction à développer en série entière en observant déjà qu’elle est de classe C∞

au voisinage de 0 et même sur son domaine de défintion à savoir R \ [2, 3] = D.
Pour x ∈ D, f(x) = ln((2−x)(3−x) et pour x ∈]−2, 2[ f(x) = ln(2−x)+ln(3−x) = ln(6)+ln(1−x

2 )+ln(1−x

3 )

puis, grâce au DSE de u → ln(1 − u) sur ]-1,1[, il vient f(x) = ln(6) −
∞∑

n=1
(2−n + 3−n)xn

n
.

On pouvait aussi dériver f , décomposer en simple f ′ en donner un DSE (cf exemple cours) et, enfin primi-
tiver terme à terme le DSE de f ′....(plus long)■

Exercice (⋆ ⋆ ⋆) 1 (Vieil X)
Domaine de définition et somme de

∑
n≥1

Hnxn.

Solution : Pour tout n ≥ 1, 1 ≤ Hn ≤ n donc, par encadrement, le rayon de cette série entière vaut 1 □

Pour la somme de cette même série entière que nous noterons S, on remarque que
∑
n≥1

Hnxn est le produit

de Cauchy des séries entières
∑
n≥0

xn et
∑
n≥1

xn

n
(toutes deux de rayon de convergence 1) donc (en vertu des

DSE usuels) : ∀x ∈] − 1, 1[, S(x) = − ln(1 − x)
1 − x

■

Exercice (⋆) 6 (Fonction C∞ non DSE)
On doit à Cauchy (1823) le premier exemple de fonction C∞ sur R n’étant pas DSE.

On pose f : x →
{

e−1/x2 si x ̸= 0
0 sinon

a) Vérifier que f est de classe C∞ sur R∗ et continue sur R.

b) Etablir par récurrence que ∀n ∈ N, il existe Pn ∈ R[X] tel que ∀x ̸= 0, f (n)(x) = Pn(x)
x3n

f(x).
c) En déduire que f est de classe C∞ sur R et que toutes les dérivées successives de f en 0 sont nulles.
d) Etablir que la série de Taylor de f converge sur R mais que f n’est pas DSE ( procéder par l’absurde).

Solution :a) et b) ne posent aucune difficulté. c) On utilise le théorème du prolongment des dérivées à tout

ordre (cf cours première année). Fixons n ≥ 1 et soit x ̸= 0 donc f (n)(x) = Pn(x)
x3n

f(x) = O(f(x)
x3n

) si x → 0.

Or |f(x)
x3n

| = t3n/2

et
, en posant t = 1

x2 ; donc en faisant tendre x vers 0 (i.e t → +∞), nous obtenons, par crois-

sance comparée, que f (n)(x) →
x→0

0. Ainsi le théorème pré-mentionné nous assure que (avec les hypothèses
vérifiées en a)) f est bien de classe C∞ sur R et que toutes les dérivées successives de f en 0 sont nulles
(limites obtenues auparavant).
d) La série de Taylor de f est donc la série nulle qui converge bien sur R et si f était DSE, elle serait somme
de cette série de Taylor au voisinage de 0. Autrement dit f serait nulle sur un tel voisinage. Ce qui est
absurde puisque f > 0 sur R∗

+. f n’est pas DSE ■

Exercice (⋆⋆) 1 (Fonction DSE)

a) Domaine de définition de f : x →
∫ 1

0
e−xt ln(t)dt?

b) Prouver que f est DSE.

Solution : a) Posons, pour t ∈]0, 1], g(t) = t ln(t) et g(0) = 0; cette fonction est continue sur le segment
[0, 1], il en résulte (intégrande continue sur ]0, 1] et fausse singularité en 0) que f est définie sur R.
b) Fixons un réel x et posons h(t) = e−xt ln(t) pour t ∈]0, 1], nous disposons alors dans ce contexte (DSE

exponentielle) de l’égalité f(t) =
∞∑

n=0
un(t), où on a posé (pour tout entier naturel n et tout t ∈ [0, 1])

un(t) = (−1)n (xg(t))n

n! .
Nous allons employer le théorème d’intégration terme à terme sur un segment. En effet, pour tout n les un

(cf a)) sont continues sur le segment [0, 1]. De plus en notant M un majorant de |g| (Weierstrass), il vient



|un(t)| ≤ (M |x|)n

n! , ce pour tout (n, t) ∈ N × [0, 1]. Ce qui prouve (série majorante étant exponentielle) la

convergence normale sur [0, 1] de la série de fonctions
∑
n≥0

un.

L’intégration terme à terme étant légitimée, nous avons
∫ 1

0
h(t)dt =

∞∑
n=0

(
∫ 1

0
un(t)dt). Soit en explicitant et

après calcul par IPP répétées :

f(x) =
∞∑

n=0

xn

(n + 1)n+1 et ce pour tout réel x donc ce DSE est validé sur R■

Exercice (⋆⋆) 2 (Un problème d’Euler)
Pour n entier naturel, on désigne par un le nombre de façons de payer n euros avec uniquement des pièces
de 2 euros et 3 euros (dont la mise en circulation est imminente).
1) Déterminer un pour n ≤ 6.
2) Constater que un est aussi le nombre de couples (x, y) ∈ N2 tels que 2x + 3y = n.
3) Démontrer que pour |x| < 1 :

1
(1 − x2)(1 − x3) =

∞∑
n=0

unxn.(Produit de Cauchy!!!)

On admet que pour de tels x on a aussi :

1
(1 − x2)(1 − x3) = 1

4 (1 + x) + 1
4 (1 − x) + 1

6 (1 − x)2 + i

√
3

9

( 1
j − x

− 1
j − x

)

4) En déduire que : un = n + 1
6 + 1

4(1 + (−1)n) + 2
√

3
9 sin

(2n + 2
3 π

)
, ce pour tout n. a

aNoter en outre que le problème d’origine porte sur des pièces de 2 et 5 écus. Ce qui donne lieu à des calculs plus pénibles.
Par exemple u1001 = 167

Exercice (⋆ ⋆ ⋆) 2 (Produit de Cauchy)
On se donne une suite telle (an) telle que a0 = 1 et, pour n ≥ 1 :

an
1
n

(
n−1∑
k=0

ak

n − k
).

a) Etablir que la suite (an) est à termes dans [0, 1].
b) Montrer que le rayon de convergence de la série entière

∑
n≥0

anxn est strictement positif.

On note f la somme de la série entière précédente.
c) Prouver qu’il existe une fonction g DSE telle que f(x) = eg(x) au voisinage de 0.

Exercice (⋆⋆) 3 (Equation différentielle)
Soit (E) : x2y′′ + xy′ + (4x4 − 1)y = 0.
Déterminer les solutions de (E) DSE.

Solution : En appliquant la méthode indiquée en cours. On trouve que ce sont les x ∈ R → λ
sin2(x)

x
, où

λ ∈ R, ces fonctions valant toute 0 en 0■

Exercice (⋆ ⋆ ⋆) 3 (X)

On se donne (an) une suite à termes dans {−1, 1} et on pose f(x) =
∞∑

n=0

an

n! xn, ce pour x à préciser.

On suppose que sur R+ toutes les dérivés successives de f sont bornées par 1.
Déterminer f .

Solution : La série exponentielle nous assure que f est définie et DSE sur R.
Nous nous proposons de montrer que f = ±g, où g : x ∈ R → e−x.
C’est évidemment le cas si la suite (an) est égale à ±((−1)n). Supposons que ce ne soit pas le cas; ceci signifie
qu’il existe un entier naturel p tel que (sans perte de généralité en passant à l’opposé) ap = ap+1 = 1. En



posant g = f (p), nous avons donc g(0) = 1 et g′(0) = 1 (cf expression des coefficients d’une S.E en fonction
des dérivés successives en 0 de sa somme). Ceci montre que g est strictement croissante au voisinage de 0+;
on contredit le fait que g ≤ 1 sur un tel voisinage■

Exercice (⋆) 7 (Calcul de somme)

Existence et valeur de
∞∑

n=0

(n(n + 1))2

n! .

Solution : Méthode donnée en cours. Résultat 27e ■

PROBLÈME : Autour du théorème d’ABEL sur les séries entières

Dans tout le problème :
(an)n∈N est une suite de nombres réels telle que la série entière

∑
anxn de la variable réelle x ait pour rayon

de convergence 1.
On désigne alors par

∑
an la série de terme général an et par f la fonction définie sur l’intervalle ] − 1, 1[

par : f(x) =
+∞∑
n=0

anxn.

On désigne par (P1) et (P2) les deux propriétés suivantes possibles de la suite (an) :
(P1) : la série

∑
an converge.

(P2) : la fonction f admet une limite finie, notée lim
x→1−

f(x), lorsque x tend vers 1 par valeurs inférieures.

I. GÉNÉRALITÉS

1. En utilisant des développements en série entière "usuels", donner dans chaque cas, un exemple de suite
(an) telle que :

a. (an) vérifie (P1) et (P2) ;
b. (an) ne vérifie pas (P1) et vérifie (P2) ;
c. (an) ne vérifie ni (P1) ni (P2) ;
d. La série

∑
anxn ne converge pas uniformément sur l’intervalle ] − 1, 1[ (justifier).

2. On suppose que la série
∑

an est absolument convergente ; montrer alors que la fonction f admet

une limite finie lorsque x tend vers 1 par valeurs inférieures et que lim
x→1−

f(x) =
+∞∑
n=0

an.

3. Exemple
Déduire de la question précédente la somme de la série

∑
n⩾2

(−1)n

n(n − 1)
(on pourra utiliser une décomposition en éléments simples).

II THÉORÈME D’ABEL

4. On suppose dans cette question que la série
∑

an converge. On va montrer qu’alors la fonction f
admet une limite finie lorsque x tend vers 1 par valeurs inférieures (théorème d’Abel).

On pose rn =
+∞∑

k=n+1
ak et pour tout x ∈ [0, 1], Rn(x) =

+∞∑
k=n+1

akxk.

a. Simplifier, pour tout x ∈ [0, 1],
+∞∑
p=1

(rn+p−1 − rn+p)xn+p.

b. En déduire que, pour tout x ∈ [0, 1[, Rn(x) = rnxn+1 + xn+1(x − 1)
+∞∑
p=1

rn+pxp−1.



c. Soit un réel ε > 0, justifier qu’il existe un entier n0 tel que pour tout entier n ⩾ n0 et tout
entier naturel p on ait |rn+p| ⩽ ε

2, puis que, pour tout entier n ⩾ n0 et pour tout réel x ∈ [0, 1],
|Rn(x)| ⩽ ε.

d. Conclure que la fonction f admet une limite lorsque x tend vers 1 par valeurs inférieures et que

lim
x→1−

f(x) =
+∞∑
n=0

an.

5. Que peut-on dire de la série
∑

an si lim
x→1−

f(x) = +∞ ?

6. Exemple
Retrouver le développement en série entière en 0 de la fonction x 7−→ arctan(x), puis utiliser le
théorème d’Abel pour écrire π

4 comme somme d’une série numérique.

7. Application
On rappelle que le produit de Cauchy de deux séries absolument convergentes est une série absolument
convergente.

a. Le produit de Cauchy de deux séries convergentes est-il une série convergente ?
(On pourra examiner le cas un = vn = (−1)n

n1/4 pour n ⩾ 1).

b. Soit
∑

un et
∑

vn deux séries de nombres réels ; on pose, pour n entier naturel, wn =
n∑

k=0
ukvn−k

et on suppose que les trois séries
∑

un,
∑

vn et
∑

wn convergent.

Montrer, à l’aide du théorème d’Abel, qu’alors
+∞∑
n=0

wn =
+∞∑
n=0

un

+∞∑
n=0

vn.

III RÉCIPROQUE DU THÉORÈME D’ABEL

8. Justifier que la réciproque du théorème d’Abel est fausse.

On cherche à rajouter une condition (Q) à la condition (P2) de telle sorte que si (an) vérifie (P2)
et (Q), alors elle vérifie (P1).

9. On prend pour (Q) la propriété : pour tout entier n, an ⩾ 0.
Montrer que si (an) vérifie les propriétés (P2) et (Q), alors elle vérifie la propriété (P1)

(on pourra montrer que
n∑

k=0
ak ⩽ lim

x→1−
f(x)).

Si on prend pour (Q) la propriété : la suite (an) vérifie an = O

( 1
n

)
(la suite (an) est dominée par la suite( 1

n

)
au voisinage de +∞), on obtient le théorème de Littlewood dont on admettra la démonstration

pour l’appliquer dans la partie suivante.

IV SÉRIES HARMONIQUES TRANSFORMÉES
Désormais, on admet et on pourra utiliser le théorème de Littlewood :
si la fonction f admet une limite finie lorsque x tend vers 1 par valeurs inférieures et que an = O

( 1
n

)
, alors

la série
∑

an converge.

Pour p entier naturel non nul, on considère une suite (εn)n⩾1 périodique de période p formée d’éléments de
l’ensemble {−1, 1}.

10. Donner, en justifiant leur valeur, les rayons de convergence des séries entières :∑
n⩾1

εnxn−1 et
∑
n⩾1

εn

n
xn.

On pose, pour x ∈] − 1, 1[ : f(x) =
+∞∑
n=1

εn

n
xn et g(x) =

+∞∑
n=1

εnxn−1 .



11. Établir que la série
∑
n⩾1

εn

n
converge si et seulement si la fonction f : x 7−→

∫ x

0
g(t)t admet une limite

finie lorsque x tend vers 1 par valeurs inférieures.

12. Montrer que g est une fraction rationnelle à déterminer.

13. Retrouver, uniquement par les deux questions précédentes, que la série harmonique
∑
n⩾1

1
n

diverge et

que la série alternée
∑
n⩾1

(−1)n

n
converge en précisant sa somme.

14. Déterminer une condition nécessaire et suffisante portant sur la somme
p∑

i=1
εi pour que la série

∑
n⩾1

εn

n

converge. Que peut-on en conclure dans les cas où la période p est un entier impair ?

15. Exemple
Dans le cas où la suite (εn)n⩾1 est périodique de période 6 avec :

ε1 = 1, ε2 = 1, ε3 = 1, ε4 = −1, ε5 = −1, ε6 = −1, déterminer
+∞∑
n=1

εn

n
.

(il est demandé de détailler les calculs).

Solution : II THÉORÈME D’ABEL

4.a. Comme rn+p−1 − rn+p = an+p , on a tout simplement:
+∞∑
p=1

(rn+p−1 − rn+p) xn+p = Rn(x) .

4.b. Il est bien connu (mais ça n’est pas au programme) que dans ces histoires, il faut travailler sur les

sommes partielles:
k∑

p=1
(rn+p−1 − rn+p) xn+p =

k∑
p=1

rn+p−1 xn+p −
k∑

p=1
rn+p xn+p ; après mise à l’écart du

premier terme de la première somme et réindexation des autres, on obtient:
k∑

p=1
(rn+p−1 − rn+p) xn+p =

rn xn+1 + xn+1(x − 1)
k−1∑
p=1

rn+p xp−1 − rn+k xn+k ; le dernier terme tend vers 0 lorsque k tend vers l’infini car

rn+k tend vers 0 puisque la série
∑

an converge, et xn+k est borné; il suffit donc de faire tendre k vers
l’infini pour obtenir la relation voulue1.

4.c. Comme on l’a déjà signalé, rn tend vers 0; par conséquent, si l’on se donne > 0 , on dispose d’un
entier n0 pour tout kn0 on ait |rk|/2 ; alors on a bien |rn+p|/2 pour nn0 et p entier naturel. Et pour

x ∈ [0, 1] et nn0 on obtient: |Rn(x)|2 + 2(1 − x)
+∞∑
p=1

xp−1 = .

4.d. Continuité de la somme à gauche en 1, assurée par convergence uniforme de la série sur [0, 1].

5. Par contraposition, la série est divergente.

6. Par primitivation du développement de 1
1 + x2 on obtient arctan(x) =

+∞∑
n=0

(−1)n x2n+1

2n + 1 pour x ∈

] − 1, 1[ ; et l’on peut2 appliquer le théorème d’Abel pour obtenir: π

4 =
+∞∑
n=0

(−1)n

2n + 1 .

7.a La série proposée converge par critère spécial des séries alternées. Le terme général du produit de

Cauchy est ici: wn =
n−1∑
k=1

(−1)n(
k(n − k)

)1/4 = (−1)nan . (poser u0 = v0 = 0 )

1Qui est valable aussi en 1 . . .
2Ce résultat s’obtient aussi par majoration du reste d’une série alternée vérifiant le critère spécial . . .



Or k(n − k)n2

4
(
étude des variations, ou mieux: (n − 2k)20

)
et par conséquent an

√
2(n − 1)√

n
; ce qui

montre que la série de terme général wn diverge grossièrement.

7.b Puisque
∑

un et
∑

vn convergent, les séries entières
∑

un xn et
∑

vn xn ont un rayon de con-
vergence au moins égal à 1. D’après le cours, c’est alors aussi le cas de

∑
wn xn. . . Si l’on note U(x) ,

V (x) , W (x) , les sommes respectives, on a: U(x) V (x) = W (x) pour tout x ∈ [0, 1[ . Mais d’après le
théorème d’Abel3 appliqué à chacune des trois séries, lorsque x tend vers 1 par valeurs inférieures, U(x)
tend vers

∑
un , V (x) tend vers

∑
vn , W (x) tend vers

∑
wn . Par unicité de la limite, le produit des

deux premières sommes est égale à la troisième
III RÉCIPROQUE DU THÉORÈME D’ABEL

8. C’est la question 1.b) !

9. Puisque les coefficients sont positifs,
n∑

k=0
ak xkf(x) pour tout x ∈ [0, 1[ ;

en outre, la fonction f est croissante sur [0, 1[ , d’où f(x) lim
x→1−

f(x) pour tout x ∈ [0, 1[.

On a donc:
n∑

k=0
ak xk lim

x→1−
f(x) pour tout x ∈ [0, 1[. En faisant tendre x vers 1 dans cette dernière inégalité,

on obtient une majoration de la suite des sommes partielles de la série à termes positifs
∑

an qui converge
donc.

IV SÉRIES HARMONIQUES TRANSFORMÉES

10. D’après le lemme d’Abel du programme officiel, s’il existe r > 0 tel que la suite de terme général
|an| rn soit bornée, alors le rayon de convergence de

∑
an xn est supérieur ou égal à r .

Avec r = 1 on voit ainsi que les deux séries considérées ont un rayon de convergence supérieur ou égal à 1.
Au point 1, la première diverge grossièrement et la deuxième ne converge pas absolument; par conséquent
1 est le rayon de convergence de l’une et de l’autre.

11. Effectivement4, on peut écrire f(x) =
∫ x

0
g(t) t. pour x ∈ ] − 1, 1[ . . . et appliquer le théorème de

Littlewood précédemment admis pour la réciproque du théorème d’Abel.

12. On a: xp g(x) =
+∞∑
n=1

n xn+p−1 =
+∞∑

k=p+1
k−p xk−1 =

+∞∑
k=p+1

k xk−1 ; par conséquent, g(x) = 1 +2 x + · · ·p xp−1

1 − xp

.

13.
∫ x

0

1
1 − t

t. diverge quand x tend vers 1; tandis que
∫ x

0

1 − t

1 − t2 t. tend vers ln 2 . . .

14. On est bien mis sur la voie par la question précédente: 1 étant racine simple du dénominateur de g(x),
il faut et il suffit que 1 soit racine du numérateur pour que l’intégrale soit convergente. (dans ce cas, g est

prolongeable par continuité en 1) Une CNS est donc:
p∑

i=1
i = 0 .

Cela ne peut pas se produire lorsque p est impair!

15. On a ici: g(x) = 1 + x + x2 − x3 − x4 − x5

1 − x6 = (1 + x + x2)(1 − x3)
(1 − x3)(1 + x3) = 1 + x

1 + x3 + x2

1 + x3 ;

on en déduit que
+∞∑
n=1

n

n
=

∫ 1

0

x.
x2 − x + 1 +

∫ 1

0

x2 x.
1 + x3 . La première intégrale (abélienne) vaut:

∫ 1

0

x.
(x − 1

2)2 + 3
4

=
∫ 1/2

−1/2

u.
u2 + 3/4 = 2

∫ 1/2

0

u.
u2 + 3/4 = 4√

3
arctan

( 1√
3

)
= 2π

3
√

3
.

Pour la seconde, on a une primitive évidente . . . Le résultat final est donc: 2π

3
√

3
+ 3

ln 2 .

3Bien entendu, cela devient trivial si les deux rayons initiaux sont strictement supérieurs à 1 . . .
4Cela aurait du être une question préalable, même si c’est du cours . . .


